360SFUDA++ : Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes

In this paper, we address the challenging source-free unsupervised domain adaptation (SFUDA) for pinhole-to-panoramic semantic segmentation, given only a pinhole image pre-trained model (i.e., source) and unlabeled panoramic images (i.e., target). Tackling this problem is non-trivial due to three cr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 04. Nov.
1. Verfasser: Zheng, Xu (VerfasserIn)
Weitere Verfasser: Zhou, Peng Yuan, Vasilakos, Athanasios V, Wang, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM379822741
003 DE-627
005 20241105233205.0
007 cr uuu---uuuuu
008 241105s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3490619  |2 doi 
028 5 2 |a pubmed24n1591.xml 
035 |a (DE-627)NLM379822741 
035 |a (NLM)39495698 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Xu  |e verfasserin  |4 aut 
245 1 0 |a 360SFUDA++  |b Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In this paper, we address the challenging source-free unsupervised domain adaptation (SFUDA) for pinhole-to-panoramic semantic segmentation, given only a pinhole image pre-trained model (i.e., source) and unlabeled panoramic images (i.e., target). Tackling this problem is non-trivial due to three critical challenges: 1) semantic mismatches from the distinct Field-of-View (FoV) between domains, 2) style discrepancies inherent in the UDA problem, and 3) inevitable distortion of the panoramic images. To tackle these problems, we propose 360SFUDA++ that effectively extracts knowledge from the source pinhole model with only unlabeled panoramic images and transfers the reliable knowledge to the target panoramic domain. Specifically, we first utilize Tangent Projection (TP) as it has less distortion and meanwhile slits the equirectangular projection (ERP) to patches with fixed FoV projection (FFP) to mimic the pinhole images. Both projections are shown effective in extracting knowledge from the source model. However, as the distinct projections make it less possible to directly transfer knowledge between domains, we then propose Reliable Panoramic Prototype Adaptation Module (RP 2 AM) to transfer knowledge at both prediction and prototype levels. RP 2 AM selects the confident knowledge and integrates panoramic prototypes for reliable knowledge adaptation. Moreover, we introduce Cross-projection Dual Attention Module (CDAM), which better aligns the spatial and channel characteristics across projections at the feature level between domains. Both knowledge extraction and transfer processes are synchronously updated to reach the best performance. Extensive experiments on the synthetic and real-world benchmarks, including outdoor and indoor scenarios, demonstrate that our 360SFUDA++ achieves significantly better performance than prior SFUDA methods. Project Page 
650 4 |a Journal Article 
700 1 |a Zhou, Peng Yuan  |e verfasserin  |4 aut 
700 1 |a Vasilakos, Athanasios V  |e verfasserin  |4 aut 
700 1 |a Wang, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 04. Nov.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:04  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3490619  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 04  |c 11