Anti-Forgetting Adaptation for Unsupervised Person Re-Identification

Regular unsupervised domain adaptive person re-identification (ReID) focuses on adapting a model from a source domain to a fixed target domain. However, an adapted ReID model can hardly retain previously-acquired knowledge and generalize to unseen data. In this paper, we propose a Dual-level Joint A...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 04. Nov.
1. Verfasser: Chen, Hao (VerfasserIn)
Weitere Verfasser: Bremond, Francois, Sebe, Nicu, Zhang, Shiliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM379822660
003 DE-627
005 20241105233205.0
007 cr uuu---uuuuu
008 241105s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3490777  |2 doi 
028 5 2 |a pubmed24n1591.xml 
035 |a (DE-627)NLM379822660 
035 |a (NLM)39495696 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hao  |e verfasserin  |4 aut 
245 1 0 |a Anti-Forgetting Adaptation for Unsupervised Person Re-Identification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Regular unsupervised domain adaptive person re-identification (ReID) focuses on adapting a model from a source domain to a fixed target domain. However, an adapted ReID model can hardly retain previously-acquired knowledge and generalize to unseen data. In this paper, we propose a Dual-level Joint Adaptation and Anti-forgetting (DJAA) framework, which incrementally adapts a model to new domains without forgetting source domain and each adapted target domain. We explore the possibility of using prototype and instance-level consistency to mitigate the forgetting during the adaptation. Specifically, we store a small number of representative image samples and corresponding cluster prototypes in a memory buffer, which is updated at each adaptation step. With the buffered images and prototypes, we regularize the image-to-image similarity and image-to-prototype similarity to rehearse old knowledge. After the multi-step adaptation, the model is tested on all seen domains and several unseen domains to validate the generalization ability of our method. Extensive experiments demonstrate that our proposed method significantly improves the anti-forgetting, generalization and backward-compatible ability of an unsupervised person ReID model 
650 4 |a Journal Article 
700 1 |a Bremond, Francois  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
700 1 |a Zhang, Shiliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 04. Nov.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:04  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3490777  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 04  |c 11