Multi-Dimensional Visual Data Restoration : Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values

The recently proposed high-order tensor algebraic framework generalizes the tensor singular value decomposition (t-SVD) induced by the invertible linear transform from order-3 to order-d ( ). However, the derived order-d t-SVD rank essentially ignores the implicit global discrepancy in the quantity...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 04., Seite 6409-6424
1. Verfasser: He, Chengxun (VerfasserIn)
Weitere Verfasser: Xu, Yang, Wu, Zebin, Zheng, Shangdong, Wei, Zhihui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM379822520
003 DE-627
005 20250306210829.0
007 cr uuu---uuuuu
008 241105s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3475738  |2 doi 
028 5 2 |a pubmed25n1265.xml 
035 |a (DE-627)NLM379822520 
035 |a (NLM)39495680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Chengxun  |e verfasserin  |4 aut 
245 1 0 |a Multi-Dimensional Visual Data Restoration  |b Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The recently proposed high-order tensor algebraic framework generalizes the tensor singular value decomposition (t-SVD) induced by the invertible linear transform from order-3 to order-d ( ). However, the derived order-d t-SVD rank essentially ignores the implicit global discrepancy in the quantity distribution of non-zero transformed high-order singular values across the higher modes of tensors. This oversight leads to suboptimal restoration in processing real-world multi-dimensional visual datasets. To address this challenge, in this study, we look in-depth at the intrinsic properties of practical visual data tensors, and put our efforts into faithfully measuring their high-order low-rank nature. Technically, we first present a novel order-d tensor rank definition. This rank function effectively captures the aforementioned discrepancy property observed in real visual data tensors and is thus called the discrepant t-SVD rank. Subsequently, we introduce a nonconvex regularizer to facilitate the construction of the corresponding discrepant t-SVD rank minimization regime. The results show that the investigated low-rank approximation has the closed-form solution and avoids dilemmas caused by the previous convex optimization approach. Based on this new regime, we meticulously develop two models for typical restoration tasks: high-order tensor completion and high-order tensor robust principal component analysis. Numerical examples on order-4 hyperspectral videos, order-4 color videos, and order-5 light field images substantiate that our methods outperform state-of-the-art tensor-represented competitors. Finally, taking a fundamental order-3 hyperspectral tensor restoration task as an example, we further demonstrate the effectiveness of our new rank minimization regime for more practical applications. The source codes of the proposed methods are available at https://github.com/CX-He/DTSVD.git 
650 4 |a Journal Article 
700 1 |a Xu, Yang  |e verfasserin  |4 aut 
700 1 |a Wu, Zebin  |e verfasserin  |4 aut 
700 1 |a Zheng, Shangdong  |e verfasserin  |4 aut 
700 1 |a Wei, Zhihui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 04., Seite 6409-6424  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:04  |g pages:6409-6424 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3475738  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 04  |h 6409-6424