A R2R3-MYB transcription factor, FeR2R3-MYB, positively regulates anthocyanin biosynthesis and drought tolerance in common buckwheat (Fagopyrum esculentum)

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 217(2024) vom: 30. Okt., Seite 109254
1. Verfasser: Luo, Yirou (VerfasserIn)
Weitere Verfasser: Xu, Xiaoyu, Yang, Lanfeng, Zhu, Xudong, Du, Yingbiao, Fang, Zhengwu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Abiotic stress CRISPR/Cas9 Interaction Secondary metabolism Stable overexpression
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
The R2R3-MYB transcription factors (TFs) play a crucial role in regulating plant secondary metabolism and abiotic stress responses, yet they are still poorly understood in common buckwheat (Fagopyrum esculentum), a valuable minor grain crop resource. In this study, a candidate gene, FeR2R3-MYB, was cloned from the anthocyanin-rich common buckwheat variety 'QZZTQ'. FeR2R3-MYB was found to contain two MYB DNA-binding domains and be located at the nucleus with transcriptional activation activity. Molecular analysis indicated that FeR2R3-MYB is predominantly expressed in flowering tissue and is highly responsive to environmental factors such as light, drought, and cold. In addition, the promoter of FeR2R3-MYB showed a positive correlation with fragment length. Further functional analysis suggested that FeR2R3-MYB not only participates in the anthocyanin biosynthetic pathway by interacting with leucoanthocyanidin reductase (FeLAR), but also enhances drought tolerance in common buckwheat. To sum up, FeR2R3-MYB exhibits positive effects on both pigment production (e.g., anthocyanin) and abiotic stress resistance, providing valuable insights for future research in buckwheat molecular breeding and resource development
Beschreibung:Date Revised 03.11.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.109254