Investigation of a Single Atom Iron Catalyst for the Electrocatalytic Reduction of Nitric Oxide to Hydroxylamine : A DFT Study

Hydroxylamine, as an important reducing agent, disinfectant, foaming agent, and biocide, plays a role in both human life and industrial production. However, its synthesis is confronted with challenges, such as high pollution and large consumption. Here, we propose a coordination tailoring strategy t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - (2024) vom: 03. Nov.
1. Verfasser: Ruan, Wenqi (VerfasserIn)
Weitere Verfasser: Yang, Chen, Hu, Jianhong, Lin, Wei, Guo, Xiangyu, Ding, Kaining
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM37975455X
003 DE-627
005 20241104233213.0
007 cr uuu---uuuuu
008 241104s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c03363  |2 doi 
028 5 2 |a pubmed24n1590.xml 
035 |a (DE-627)NLM37975455X 
035 |a (NLM)39488856 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ruan, Wenqi  |e verfasserin  |4 aut 
245 1 0 |a Investigation of a Single Atom Iron Catalyst for the Electrocatalytic Reduction of Nitric Oxide to Hydroxylamine  |b A DFT Study 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Hydroxylamine, as an important reducing agent, disinfectant, foaming agent, and biocide, plays a role in both human life and industrial production. However, its synthesis is confronted with challenges, such as high pollution and large consumption. Here, we propose a coordination tailoring strategy to design 47 graphene-supported single iron atom catalysts (SACs), namely, FeCxZy (Z = B, N, O, P, and S), for the reduction of nitric oxide to hydroxylamine. Using density functional theory calculations, we demonstrated the great impact of the coordination environment on the stability, catalytic selectivity, and activity of the Fe site. We identified that the experimentally available Fe@N4 possesses an ultralow theoretical limiting potential of -0.32 V compared to that of other catalysts. A comprehensive investigation of the electronic properties elucidates the underlying active origin and reaction mechanism of the nitric oxide reduction reaction to hydroxylamine on Fe@N4. These results not only explain the catalytic origin of synthesized SACs for the NH2OH production but also offer theoretical guidance for further optimizing high-performance catalysts 
650 4 |a Journal Article 
700 1 |a Yang, Chen  |e verfasserin  |4 aut 
700 1 |a Hu, Jianhong  |e verfasserin  |4 aut 
700 1 |a Lin, Wei  |e verfasserin  |4 aut 
700 1 |a Guo, Xiangyu  |e verfasserin  |4 aut 
700 1 |a Ding, Kaining  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g (2024) vom: 03. Nov.  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g year:2024  |g day:03  |g month:11 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c03363  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |j 2024  |b 03  |c 11