Salient Object Detection From Arbitrary Modalities

Toward desirable saliency prediction, the types and numbers of inputs for a salient object detection (SOD) algorithm may dynamically change in many real-life applications. However, existing SOD algorithms are mainly designed or trained for one particular type of inputs, failing to be generalized to...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 6268-6282
Auteur principal: Huang, Nianchang (Auteur)
Autres auteurs: Yang, Yang, Xi, Ruida, Zhang, Qiang, Han, Jungong, Huang, Jin
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM379722895
003 DE-627
005 20250306205326.0
007 cr uuu---uuuuu
008 241102s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3486225  |2 doi 
028 5 2 |a pubmed25n1264.xml 
035 |a (DE-627)NLM379722895 
035 |a (NLM)39485687 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Nianchang  |e verfasserin  |4 aut 
245 1 0 |a Salient Object Detection From Arbitrary Modalities 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Toward desirable saliency prediction, the types and numbers of inputs for a salient object detection (SOD) algorithm may dynamically change in many real-life applications. However, existing SOD algorithms are mainly designed or trained for one particular type of inputs, failing to be generalized to other types of inputs. Consequentially, more types of SOD algorithms need to be prepared in advance for handling different types of inputs, raising huge hardware and research costs. Differently, in this paper, we propose a new type of SOD task, termed Arbitrary Modality SOD (AM SOD). The most prominent characteristics of AM SOD are that the modality types and modality numbers will be arbitrary or dynamically changed. The former means that the inputs to the AM SOD algorithm may be arbitrary modalities such as RGB, depths, or even any combination of them. While, the latter indicates that the inputs may have arbitrary modality numbers as the input type is changed, e.g. single-modality RGB image, dual-modality RGB-Depth (RGB-D) images or triple-modality RGB-Depth-Thermal (RGB-D-T) images. Accordingly, a preliminary solution to the above challenges, i.e. a modality switch network (MSN), is proposed in this paper. In particular, a modality switch feature extractor (MSFE) is first designed to extract discriminative features from each modality effectively by introducing some modality indicators, which will generate some weights for modality switching. Subsequently, a dynamic fusion module (DFM) is proposed to adaptively fuse features from a variable number of modalities based on a novel Transformer structure. Finally, a new dataset, named AM-XD, is constructed to facilitate research on AM SOD. Extensive experiments demonstrate that our AM SOD method can effectively cope with changes in the type and number of input modalities for robust salient object detection. Our code and AM-XD dataset will be released on https://github.com/nexiakele/AMSODFirst 
650 4 |a Journal Article 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Xi, Ruida  |e verfasserin  |4 aut 
700 1 |a Zhang, Qiang  |e verfasserin  |4 aut 
700 1 |a Han, Jungong  |e verfasserin  |4 aut 
700 1 |a Huang, Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 18., Seite 6268-6282  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:18  |g pages:6268-6282 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3486225  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 18  |h 6268-6282