Formation and Dynamics of Imidazole Supramolecular Chains Investigated by Deep Potential Molecular Dynamics Simulation

Imidazole-based materials have attracted considerable attention due to their promising potential for facilitating anhydrous proton transport at high temperatures. Herein, a machine learning-based deep potential (DP) model for bulk imidazole with first-principles accuracy is developed. The trained mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 45 vom: 12. Nov., Seite 23864-23871
1. Verfasser: Zhang, Jianwei (VerfasserIn)
Weitere Verfasser: Lei, Jinyu, Feng, Pu, Chen, Wenduo, Zhou, Jiajia, Zhang, Guangzhao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Imidazole-based materials have attracted considerable attention due to their promising potential for facilitating anhydrous proton transport at high temperatures. Herein, a machine learning-based deep potential (DP) model for bulk imidazole with first-principles accuracy is developed. The trained model exhibits remarkable accuracy in predicting energies and forces, with minor errors of 4.71 × 10-4 eV/atom and 3.23 × 10-2 eV/Å, respectively. Utilizing DP molecular dynamics simulations, we have systematically investigated the temperature-dependent formation and dynamics of imidazole supramolecular chains through the partial radial distribution function, quantification of hydrogen bond numbers, incoherent intermediate scattering function, and diffusion coefficient. The findings reveal the influence of temperature on the proton transport path following either the "Grotthuss" and "vehicle" mechanism
Beschreibung:Date Revised 12.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c02888