A framework for measuring the training efficiency of a neural architecture

© The Author(s) 2024.

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - 57(2024), 12 vom: 23., Seite 349
1. Verfasser: Cueto-Mendoza, Eduardo (VerfasserIn)
Weitere Verfasser: Kelleher, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Deep learning Deep neural networks Efficiency Hyperparameters
LEADER 01000caa a22002652 4500
001 NLM379655888
003 DE-627
005 20241101232850.0
007 cr uuu---uuuuu
008 241031s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-024-10943-8  |2 doi 
028 5 2 |a pubmed24n1587.xml 
035 |a (DE-627)NLM379655888 
035 |a (NLM)39478973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cueto-Mendoza, Eduardo  |e verfasserin  |4 aut 
245 1 2 |a A framework for measuring the training efficiency of a neural architecture 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2024. 
520 |a Measuring Efficiency in neural network system development is an open research problem. This paper presents an experimental framework to measure the training efficiency of a neural architecture. To demonstrate our approach, we analyze the training efficiency of Convolutional Neural Networks and Bayesian equivalents on the MNIST and CIFAR-10 tasks. Our results show that training efficiency decays as training progresses and varies across different stopping criteria for a given neural model and learning task. We also find a non-linear relationship between training stopping criteria, training Efficiency, model size, and training Efficiency. Furthermore, we illustrate the potential confounding effects of overtraining on measuring the training efficiency of a neural architecture. Regarding relative training efficiency across different architectures, our results indicate that CNNs are more efficient than BCNNs on both datasets. More generally, as a learning task becomes more complex, the relative difference in training efficiency between different architectures becomes more pronounced 
650 4 |a Journal Article 
650 4 |a Deep learning 
650 4 |a Deep neural networks 
650 4 |a Efficiency 
650 4 |a Hyperparameters 
700 1 |a Kelleher, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 57(2024), 12 vom: 23., Seite 349  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:12  |g day:23  |g pages:349 
856 4 0 |u http://dx.doi.org/10.1007/s10462-024-10943-8  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e 12  |b 23  |h 349