|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM379655632 |
003 |
DE-627 |
005 |
20241102232731.0 |
007 |
cr uuu---uuuuu |
008 |
241031s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/VIW.20230087
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1588.xml
|
035 |
|
|
|a (DE-627)NLM379655632
|
035 |
|
|
|a (NLM)39478956
|
035 |
|
|
|a (PII)20230087
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Enbo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML-directed LSFM is an emerging area for multi-organ imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multi-scale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep-tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multi-organ imaging to tumor diagnosis. In addition, this review will address AI/ML-directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post-imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Artificial intelligence
|
650 |
|
4 |
|a Biological tissues
|
650 |
|
4 |
|a Biomedical imaging
|
650 |
|
4 |
|a Light-sheet fluorescence microscopy
|
700 |
1 |
|
|a Li, Yan-Ruide
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Margolis, Samuel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Kaidong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yaran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shaolei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Jongchan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Charlie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Lili
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chu, Alison
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yuhua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hsiai, Tzung K
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t View (Beijing, China)
|d 2020
|g 5(2024), 5 vom: 30. Okt.
|w (DE-627)NLM333040546
|x 2688-268X
|7 nnns
|
773 |
1 |
8 |
|g volume:5
|g year:2024
|g number:5
|g day:30
|g month:10
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/VIW.20230087
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_61
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_72
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_131
|
912 |
|
|
|a GBV_ILN_135
|
912 |
|
|
|a GBV_ILN_138
|
912 |
|
|
|a GBV_ILN_147
|
912 |
|
|
|a GBV_ILN_176
|
912 |
|
|
|a GBV_ILN_179
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
912 |
|
|
|a GBV_ILN_813
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2004
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2016
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2031
|
912 |
|
|
|a GBV_ILN_2039
|
912 |
|
|
|a GBV_ILN_2285
|
951 |
|
|
|a AR
|
952 |
|
|
|d 5
|j 2024
|e 5
|b 30
|c 10
|