Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging

Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:View (Beijing, China). - 2020. - 5(2024), 5 vom: 30. Okt.
1. Verfasser: Zhu, Enbo (VerfasserIn)
Weitere Verfasser: Li, Yan-Ruide, Margolis, Samuel, Wang, Jing, Wang, Kaidong, Zhang, Yaran, Wang, Shaolei, Park, Jongchan, Zheng, Charlie, Yang, Lili, Chu, Alison, Zhang, Yuhua, Gao, Liang, Hsiai, Tzung K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:View (Beijing, China)
Schlagworte:Journal Article Artificial intelligence Biological tissues Biomedical imaging Light-sheet fluorescence microscopy
LEADER 01000caa a22002652 4500
001 NLM379655632
003 DE-627
005 20241102232731.0
007 cr uuu---uuuuu
008 241031s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/VIW.20230087  |2 doi 
028 5 2 |a pubmed24n1588.xml 
035 |a (DE-627)NLM379655632 
035 |a (NLM)39478956 
035 |a (PII)20230087 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Enbo  |e verfasserin  |4 aut 
245 1 0 |a Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML-directed LSFM is an emerging area for multi-organ imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multi-scale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep-tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multi-organ imaging to tumor diagnosis. In addition, this review will address AI/ML-directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post-imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research 
650 4 |a Journal Article 
650 4 |a Artificial intelligence 
650 4 |a Biological tissues 
650 4 |a Biomedical imaging 
650 4 |a Light-sheet fluorescence microscopy 
700 1 |a Li, Yan-Ruide  |e verfasserin  |4 aut 
700 1 |a Margolis, Samuel  |e verfasserin  |4 aut 
700 1 |a Wang, Jing  |e verfasserin  |4 aut 
700 1 |a Wang, Kaidong  |e verfasserin  |4 aut 
700 1 |a Zhang, Yaran  |e verfasserin  |4 aut 
700 1 |a Wang, Shaolei  |e verfasserin  |4 aut 
700 1 |a Park, Jongchan  |e verfasserin  |4 aut 
700 1 |a Zheng, Charlie  |e verfasserin  |4 aut 
700 1 |a Yang, Lili  |e verfasserin  |4 aut 
700 1 |a Chu, Alison  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuhua  |e verfasserin  |4 aut 
700 1 |a Gao, Liang  |e verfasserin  |4 aut 
700 1 |a Hsiai, Tzung K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t View (Beijing, China)  |d 2020  |g 5(2024), 5 vom: 30. Okt.  |w (DE-627)NLM333040546  |x 2688-268X  |7 nnns 
773 1 8 |g volume:5  |g year:2024  |g number:5  |g day:30  |g month:10 
856 4 0 |u http://dx.doi.org/10.1002/VIW.20230087  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_135 
912 |a GBV_ILN_138 
912 |a GBV_ILN_147 
912 |a GBV_ILN_176 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
912 |a GBV_ILN_813 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2016 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2285 
951 |a AR 
952 |d 5  |j 2024  |e 5  |b 30  |c 10