Cell-Shearing Chemistry Directed Closed-Pore Regeneration in Biomass-Derived Hard Carbons for Ultrafast Sodium Storage

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 30. Okt., Seite e2412989
1. Verfasser: Lan, Nan (VerfasserIn)
Weitere Verfasser: Shen, Yushan, Li, Jingyi, He, Hanna, Zhang, Chuhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biomass cell‐shearing chemistry closed pore hard carbon sodium ion battery
LEADER 01000naa a22002652 4500
001 NLM379599171
003 DE-627
005 20241031234636.0
007 cr uuu---uuuuu
008 241031s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202412989  |2 doi 
028 5 2 |a pubmed24n1585.xml 
035 |a (DE-627)NLM379599171 
035 |a (NLM)39473302 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lan, Nan  |e verfasserin  |4 aut 
245 1 0 |a Cell-Shearing Chemistry Directed Closed-Pore Regeneration in Biomass-Derived Hard Carbons for Ultrafast Sodium Storage 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a The closed-pore structure of hard carbons holds the key to high plateau capacity and rapid diffusion kinetics when applied as sodium-ion battery (SIB) anodes. However, understanding and establishing the structure-electrochemistry relationship still remains a significant challenge. This work, for the first time, introduces an innovative deep eutectic solvent (DES) cell-shearing strategy to precisely tailor the cell structure of natural bamboo and consequently the closed-pore in its derived hard carbons. The DES shearing force effectively modifies the pore architecture by simultaneously shearing and dissolving amorphous components to form closed pore cores with adjustable sizes, as well as disintegrating crystalline cellulose through generation of competing hydrogen bonds to elaborately tune the pore wall thickness and ordering. The optimized closed-pore structure featuring appropriate pore size (∼2 nm) and ultra-thin (1-3 layers) disordered pore walls, exhibits abundant active sites and delivers rapid ion diffusion kinetics and high reaction reversibility. Consequently, a high reversible capacity of 422 mAh g-1 at 30 mA g-1 along with an exceptional rate capability (318.6 mAh g-1 at 6 A g-1) are achieved, outperforming almost all previous reported hard carbons. The new concept of cell-shearing chemistry for closed-pore regeneration significantly advances the applications of biomass materials for energy storage 
650 4 |a Journal Article 
650 4 |a biomass 
650 4 |a cell‐shearing chemistry 
650 4 |a closed pore 
650 4 |a hard carbon 
650 4 |a sodium ion battery 
700 1 |a Shen, Yushan  |e verfasserin  |4 aut 
700 1 |a Li, Jingyi  |e verfasserin  |4 aut 
700 1 |a He, Hanna  |e verfasserin  |4 aut 
700 1 |a Zhang, Chuhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 30. Okt., Seite e2412989  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:30  |g month:10  |g pages:e2412989 
856 4 0 |u http://dx.doi.org/10.1002/adma.202412989  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 30  |c 10  |h e2412989