Foliar application of carbon dots enhances nitrogen uptake and assimilation through CEPD1-dependent signaling in plants

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 217(2024) vom: 05. Dez., Seite 109229
1. Verfasser: Pan, Zhiyuan (VerfasserIn)
Weitere Verfasser: Zang, Huihui, Li, Yanjuan, Wang, Xiao, Xia, Nan, Liu, Chong, Li, Zongyun, Han, Yonghua, Tang, Zhonghou, Sun, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Arabidopsis thaliana CEPD1 Carbon dots NO(3)(−) and NH(4)(+) NUE Plasma membrane H(+)-ATPase Sweetpotato Nitrogen N762921K75 mehr... Carbon 7440-44-0 Arabidopsis Proteins
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
The use of nitrogen (N) fertilizers increases crop yield, but the accumulation of residual N in agricultural soils poses significant environmental risks. Improving the N use efficiency (NUE) of crops can help reduce N pollution. While nanomaterials have been shown to enhance crop agronomic traits, more research is needed to clarify the regulatory mechanisms involved. In this study, foliar spraying of carbon dots (CDs, 1 mg mL-1) derived from Salvia miltiorrhiza increased the activity of plasma membrane H+-ATPase in Arabidopsis thaliana roots, promoting the uptake, transport, and assimilation of NO3- and NH4+. The upregulation of N metabolism-related genes, such as AtAMTs and AtNRTs, was also observed in A. thaliana roots. Transcriptome analysis suggested that this regulatory effect is mediated by the shoot-to-root mobile polypeptide CEPD1 (C-terminally encoded peptide DOWNSTREAM 1) signaling pathway. Additionally, foliar application of CDs increased the NUE of sweetpotato (Ipomoea batatas (L.) Lam.) from 2.5% to 8.1%. The upregulation of genes such as CEPD1 in leaves was observed following CDs application under different N conditions. Finally, foliar spraying of CDs significantly increased field yield and enhanced tolerance to low N stress in sweetpotato. Overall, this study demonstrated that foliar application of CDs improved NUE in plants through CEPD1-dependent signaling
Beschreibung:Date Completed 01.12.2024
Date Revised 01.12.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.109229