Exploring Topochemical Oxidation Reactions for Reversible Tuning of Thermal Conductivity in Perovskite Fe Oxides

© 2024 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 36(2024), 20 vom: 22. Okt., Seite 10249-10258
1. Verfasser: Varela-Domínguez, Noa (VerfasserIn)
Weitere Verfasser: Claro, Marcel S, Carbó-Argibay, Enrique, Magén, César, Rivadulla, Francisco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2024 The Authors. Published by American Chemical Society.
We present a study on the reversibility of thermal conductivity in iron oxides through topochemical oxygen exchange between brownmillerite (BM) (Ca,Sr)FeO2.5 and perovskite (PV) (Ca,Sr)FeO3.0. By using different oxidation methods, including gas phase (O2/O3), liquid phase (NaOCl in H2O), and solid electrolyte (Y2O3:ZrO2), we demonstrate that the oxidation pathway has a critical influence on the reversibility of the ionic-exchange process. Cyclic oxidation and reduction using O2/O3 or NaOCl lead to an important accumulation of structural defects, undermining the reversibility of thermal conductivity. In the case of wet oxidation, we demonstrate an inherent tendency of negative charge-transfer oxides toward amorphization and elucidate the origin of this effect. Conversely, the electrochemical injection of the O2- ions via a Y2O3:ZrO2 solid electrolyte reduces structural damage significantly, enhancing both reversibility and durability. This study underscores the importance of selecting appropriate topochemical oxygen exchange methods to maintain structural integrity and optimize functional performance in oxide-based tunable devices
Beschreibung:Date Revised 29.10.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.4c02023