|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM379358832 |
003 |
DE-627 |
005 |
20241025233121.0 |
007 |
cr uuu---uuuuu |
008 |
241025s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202409137
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1580.xml
|
035 |
|
|
|a (DE-627)NLM379358832
|
035 |
|
|
|a (NLM)39449216
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Jiacheng
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Metalgel with Liquid Metal Continuum Immobilized in Polymer Network
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 25.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Gels are formed by fluids that expand throughout the whole volume of 3D polymer networks. To unlock unprecedented properties, exploring new fluids immobilized in polymer networks is crucial. Here, a new liquid metal-polymer gel material termed "metalgel" is introduced via fluid replacement strategy, featuring 92.40% vol liquid metal fluid as a continuum immobilized by interconnected nanoscale polymer network. The unique structure endows metalgel with high electrical conductivity (up to 3.18 × 106 S·m‒1), tissue-like softness (Young's modulus as low as 70 kPa), and low gas permeability (4.50 × 10‒22 m2·s‒1·Pa‒1). Besides, metalgel demonstrates electrical stability under extreme deformations, such as being run over by a 4.5-metric-tonne truck, and maintains its integrity in various environments for up to 180 days. The immobilization of high-volume-fraction liquid metal fluid is realized by electrostatic interactions is further revealed. Potential applications for metalgel are diverse and include soft electromagnetic shielding, hermetic sealing, and stimulating/sensing electrodes in implantable bioelectronics, underscoring its broad applicability
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bioelectronic electrodes
|
650 |
|
4 |
|a gels
|
650 |
|
4 |
|a high electrical conductivity
|
650 |
|
4 |
|a liquid metal fluids
|
650 |
|
4 |
|a polymer networks
|
700 |
1 |
|
|a Ye, Tingting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Yiding
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Weitong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yiran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xusong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yiran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Fangyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yuanzhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Kuangyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mao, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tan, Ruiyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Jiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Er
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Luhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Qianming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Chenyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Junye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Wenfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Ye
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 24. Okt., Seite e2409137
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:24
|g month:10
|g pages:e2409137
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202409137
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 24
|c 10
|h e2409137
|