Dynamic Lock-And-Release Mechanism Enables Reduced ΔG at Low Temperatures for High-Performance Polyanionic Cathode in Sodium-Ion Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 49 vom: 24. Dez., Seite e2413013
1. Verfasser: Li, Shuqiang (VerfasserIn)
Weitere Verfasser: Lu, Xueying, Li, Yu, Wang, Huaizhi, Sun, Yufeng, Zhou, Qiannan, Yue, Jiasheng, Guo, Ruiqi, Wu, Feng, Wu, Chuan, Bai, Ying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article coordination field chemistry dynamic lock‐and‐release low‐temperature polyanionic cathodes sodium ion batteries
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Low-temperature synthesis of polyanionic cathodes for sodium-ion batteries is highly desirable but often plagued by prolonged reaction times and suboptimal crystallinity. To address these challenges, a novel self-adaptive coordination field regulation (SACFR) strategy based on a dynamic lock-and-release (DLR) mechanism is introduced. Specifically, urea is used as a DLR carrier during synthesis, which dynamically "locks" and "releases" vanadium ions for controlled release, simultaneously "locking" H+ ions to enhance phosphate group release, thereby creating a self-adaptive coordination field that can intelligently respond to real-time demands of the reaction system. This dynamic coordination behavior contributes to both an improvement in reaction kinetics and a significant reduction in Gibbs free energy change (ΔG). As a result, the kinetic efficiency and thermodynamic spontaneity of the reaction are greatly enhanced, enabling the efficient synthesis of high-crystalline Na3V2O2(PO4)2F (NVOPF) at 90 °C within just 3 hours. The as-prepared NVOPF cathode exhibits exceptional rate performance and ultra-stable cycling stability across a broad temperature range. Furthermore, the successful kilogram-scale synthesis underscores the practical potential of the innovative strategy. This work pioneers the regulation of coordination field chemistry for polyanionic cathode synthesis, providing transformative insights into material design
Beschreibung:Date Revised 05.12.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202413013