Ensemble-Enhanced Semi-Supervised Learning with Optimized Graph Construction for High-Dimensional Data

Graph-based methods have demonstrated exceptional performance in semi-supervised classification. However, existing graph-based methods typically construct either a predefined graph in the original space or an adaptive graph within the output space, which often limits their ability to fully utilize p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 24. Okt.
1. Verfasser: Li, Guojie (VerfasserIn)
Weitere Verfasser: Yu, Zhiwen, Yang, Kaixiang, Chen, C L Philip, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM379332485
003 DE-627
005 20241025232853.0
007 cr uuu---uuuuu
008 241025s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3486319  |2 doi 
028 5 2 |a pubmed24n1580.xml 
035 |a (DE-627)NLM379332485 
035 |a (NLM)39446542 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Guojie  |e verfasserin  |4 aut 
245 1 0 |a Ensemble-Enhanced Semi-Supervised Learning with Optimized Graph Construction for High-Dimensional Data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Graph-based methods have demonstrated exceptional performance in semi-supervised classification. However, existing graph-based methods typically construct either a predefined graph in the original space or an adaptive graph within the output space, which often limits their ability to fully utilize prior information and capture the optimal intrinsic data distribution, particularly in high-dimensional data with abundant redundant and noisy features. This paper introduces a novel approach: Semi-Supervised Classification with Optimized Graph Construction (SSC-OGC). SSC-OGC leverages both predefined and adaptive graphs to explore intrinsic data distribution and effectively employ prior information. Additionally, a graph constraint regularization term (GCR) and a collaborative constraint regularization term (CCR) are incorporated to further enhance the quality of the adaptive graph structure and the learned subspace, respectively. To eliminate the negative effect of constructing a predefined graph in the original data space, we further propose a Hybrid Subspace Ensemble-enhanced framework based on the proposed Optimized Graph Construction method (HSE-OGC). Specifically, we construct multiple hybrid subspaces, which consist of meticulously chosen features from the original data to achieve high-quality and diverse space representations. Then, HSE-OGC constructs multiple predefined graphs within hybrid subspaces and trains multiple SSC-OGC classifiers to complement each other, significantly improving the overall performance. Experimental results conducted on various high-dimensional datasets demonstrate that HSE-OGC exhibits outstanding performance 
650 4 |a Journal Article 
700 1 |a Yu, Zhiwen  |e verfasserin  |4 aut 
700 1 |a Yang, Kaixiang  |e verfasserin  |4 aut 
700 1 |a Chen, C L Philip  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 24. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:24  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3486319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 24  |c 10