Illuminating Salient Contributions in Neuron Activation with Attribution Equilibrium

With the remarkable success of deep neural networks, there is a growing interest in research aimed at providing clear interpretations of their decision-making processes. In this paper, we introduce Attribution Equilibrium, a novel method to decompose output predictions into fine-grained attributions...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 24. Okt.
1. Verfasser: Nam, Woo-Jeoung (VerfasserIn)
Weitere Verfasser: Lee, Seong-Whan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM37933237X
003 DE-627
005 20241025232853.0
007 cr uuu---uuuuu
008 241025s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3485775  |2 doi 
028 5 2 |a pubmed24n1580.xml 
035 |a (DE-627)NLM37933237X 
035 |a (NLM)39446543 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nam, Woo-Jeoung  |e verfasserin  |4 aut 
245 1 0 |a Illuminating Salient Contributions in Neuron Activation with Attribution Equilibrium 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a With the remarkable success of deep neural networks, there is a growing interest in research aimed at providing clear interpretations of their decision-making processes. In this paper, we introduce Attribution Equilibrium, a novel method to decompose output predictions into fine-grained attributions, balancing positive and negative relevance for clearer visualization of the evidence behind a network decision. We carefully analyze conventional approaches to decision explanation and present a different perspective on the conservation of evidence. We define the evidence as a gap between positive and negative influences among gradient-derived initial contribution maps. Then, we incorporate antagonistic elements and a user-defined criterion for the degree of positive attribution during propagation. Additionally, we consider the role of inactivated neurons in the propagation rule, thereby enhancing the discernment of less relevant elements such as the background. We conduct various assessments in a verified experimental environment with PASCAL VOC 2007, MS COCO 2014, and ImageNet datasets. The results demonstrate that our method outperforms existing attribution methods both qualitatively and quantitatively in identifying the key input features that influence model decisions 
650 4 |a Journal Article 
700 1 |a Lee, Seong-Whan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 24. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:24  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3485775  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 24  |c 10