AI-Driven Electrolyte Additive Selection to Boost Aqueous Zn-Ion Batteries Stability

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 23. Okt., Seite e2411991
1. Verfasser: Li, Haobo (VerfasserIn)
Weitere Verfasser: Hao, Junnan, Qiao, Shi-Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aqueous battery stability artificial‐intelligence clustering data‐driven machine learning electrolyte additive design surface free energy
LEADER 01000caa a22002652 4500
001 NLM379307642
003 DE-627
005 20241025232657.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202411991  |2 doi 
028 5 2 |a pubmed24n1580.xml 
035 |a (DE-627)NLM379307642 
035 |a (NLM)39444047 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Haobo  |e verfasserin  |4 aut 
245 1 0 |a AI-Driven Electrolyte Additive Selection to Boost Aqueous Zn-Ion Batteries Stability 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a In tackling the stability challenge of aqueous Zn-ion batteries (AZIBs) for large-scale energy storage, the adoption of electrolyte additive emerges as a practical solution. Unlike current trial-and-error methods for selecting electrolyte additives, a data-driven strategy is proposed using theoretically computed surface free energy as a stability descriptor, benchmarked against experimental results. Numerous additives are calculated from existing literature, forming a database for machine learning (ML) training. Importantly, this ML model relies solely on experimental values, effectively addressing the challenge of large solvent molecule models that are difficult to handle with quantum chemistry computation. The interpretable linear regression algorithm identifies the number of heavy atoms in the additive molecule and the liquid surface tension as key factors. Artificial intelligence (AI) clustering categorizes additive molecules, identifying regions with the most significant impact on enhancing battery stability. Experimental verification successfully confirms the exceptional performance of 1,2,3-butanetriol and acetone in the optimal region. This integrated methodology, combining theoretical models, data-driven ML, and experimental validation, provides insights into the rational design of battery electrolyte additives 
650 4 |a Journal Article 
650 4 |a aqueous battery stability 
650 4 |a artificial‐intelligence clustering 
650 4 |a data‐driven machine learning 
650 4 |a electrolyte additive design 
650 4 |a surface free energy 
700 1 |a Hao, Junnan  |e verfasserin  |4 aut 
700 1 |a Qiao, Shi-Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 23. Okt., Seite e2411991  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:23  |g month:10  |g pages:e2411991 
856 4 0 |u http://dx.doi.org/10.1002/adma.202411991  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 23  |c 10  |h e2411991