Spatially Precise Light-Activated Dedoping in Wafer-Scale MoS2 Films

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 23. Okt., Seite e2409825
1. Verfasser: Ghoshal, Debjit (VerfasserIn)
Weitere Verfasser: Paul, Goutam, Sagar, Srikrishna, Shank, Cole, Hurley, Lauren A, Hooper, Nina, Tan, Jeiwan, Burns, Kory, Hachtel, Jordan A, Ferguson, Andrew J, Blackburn, Jeffrey L, Lagemaat, Jao van de, Miller, Elisa M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials optoelectronics photo‐dedoping wafer‐scale manipulation
Beschreibung
Zusammenfassung:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
2D materials, particularly transition metal dichalcogenides (TMDCs), have shown great potential for microelectronics and optoelectronics. However, a major challenge in commercializing these materials is the inability to control their doping at a wafer scale with high spatial fidelity. Interface chemistry is used with the underlying substrate oxide and concomitant exposure to visible light in ambient conditions for photo-dedoping wafer scale MoS2. It is hypothesized that the oxide layer traps photoexcited holes, leaving behind long-lived electrons that become available for surface reactions with ambient air at sulfur vacancies (defect sites) resulting in dedoping. Additionally, high fidelity spatial control is showcased over the dedoping process, by laser writing, and fine control achieved over the degree of doping by modulating the illumination time and power density. This localized change in MoS2 doping density is very stable (at least 7 days) and robust to processing conditions like high temperature and vacuum. The scalability and ease of implementation of this approach can address one of the major issues preventing the "Lab to Fab" transition of 2D materials and facilitate its seamless integration for commercial applications in multi-logic devices, inverters, and other optoelectronic devices
Beschreibung:Date Revised 24.10.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202409825