A Bi-Directionally Fused Boundary Aware Network for Skin Lesion Segmentation

It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global informat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 13., Seite 6340-6353
1. Verfasser: Yuan, Feiniu (VerfasserIn)
Weitere Verfasser: Peng, Yuhuan, Huang, Qinghua, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM379283840
003 DE-627
005 20241114233806.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3482864  |2 doi 
028 5 2 |a pubmed24n1600.xml 
035 |a (DE-627)NLM379283840 
035 |a (NLM)39441680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Feiniu  |e verfasserin  |4 aut 
245 1 2 |a A Bi-Directionally Fused Boundary Aware Network for Skin Lesion Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global information but with insufficient spatial details. To overcome the difficulties in discriminating small or blurred skin lesions, we propose a Bi-directionally Fused Boundary Aware Network (BiFBA-Net). To utilize complementary features produced by CNNs and Transformers, we design a dual-encoding structure. Different from existing dual-encoders, our method designs a Bi-directional Attention Gate (Bi-AG) with two inputs and two outputs for crosswise feature fusion. Our Bi-AG accepts two kinds of features from CNN and Transformer encoders, and two attention gates are designed to generate two attention outputs that are sent back to the two encoders. Thus, we implement adequate exchanging of multi-scale information between CNN and Transformer encoders in a bi-directional and attention way. To perfectly restore feature maps, we propose a progressive decoding structure with boundary aware, containing three decoders with six supervised losses. The first decoder is a CNN network for producing more spatial details. The second one is a Partial Decoder (PD) for aggregating high-level features with more semantics. The last one is a Boundary Aware Decoder (BAD) proposed to progressively improve boundary accuracy. Our BAD uses residual structure and Reverse Attention (RA) at different scales to deeply mine structural and spatial details for refining lesion boundaries. Extensive experiments on public datasets show that our BiFBA-Net achieves higher segmentation accuracy, and has much better ability of boundary perceptions than compared methods. It also alleviates both over-segmentation of small lesions and under-segmentation of large ones 
650 4 |a Journal Article 
700 1 |a Peng, Yuhuan  |e verfasserin  |4 aut 
700 1 |a Huang, Qinghua  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 13., Seite 6340-6353  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:13  |g pages:6340-6353 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3482864  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 13  |h 6340-6353