Developing predictive precision medicine models by exploiting real-world data using machine learning methods

© 2024 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 14 vom: 28., Seite 2980-3003
1. Verfasser: Theocharopoulos, Panagiotis C (VerfasserIn)
Weitere Verfasser: Bersimis, Sotiris, Georgakopoulos, Spiros V, Karaminas, Antonis, Tasoulis, Sotiris K, Plagianakos, Vassilis P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 68T09 92C50 Predictive precision medicine big data biochemical testing electronic health records real-world data statistical machine learning
LEADER 01000naa a22002652 4500
001 NLM379269430
003 DE-627
005 20241024232904.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2315451  |2 doi 
028 5 2 |a pubmed24n1579.xml 
035 |a (DE-627)NLM379269430 
035 |a (NLM)39440239 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Theocharopoulos, Panagiotis C  |e verfasserin  |4 aut 
245 1 0 |a Developing predictive precision medicine models by exploiting real-world data using machine learning methods 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Computational Medicine encompasses the application of Statistical Machine Learning and Artificial Intelligence methods on several traditional medical approaches, including biochemical testing which is extremely valuable both for early disease prognosis and long-term individual monitoring, as it can provide important information about a person's health status. However, using Statistical Machine Learning and Artificial Intelligence algorithms to analyze biochemical test data from Electronic Health Records requires several preparatory steps, such as data manipulation and standardization. This study presents a novel approach for utilizing Electronic Health Records from large, real-world databases to develop predictive precision medicine models by exploiting Artificial Intelligence. Furthermore, to demonstrate the effectiveness of this approach, we compare the performance of various traditional Statistical Machine Learning and Deep Learning algorithms in predicting individuals' future biochemical test outcomes. Specifically, using data from a large real-world database, we exploit a longitudinal format of the data in order to predict the future values of 15 biochemical tests and identify individuals at high risk. The proposed approach and the extensive model comparison contribute to the personalized approach that modern medicine aims to achieve 
650 4 |a Journal Article 
650 4 |a 68T09 
650 4 |a 92C50 
650 4 |a Predictive precision medicine 
650 4 |a big data 
650 4 |a biochemical testing 
650 4 |a electronic health records 
650 4 |a real-world data 
650 4 |a statistical machine learning 
700 1 |a Bersimis, Sotiris  |e verfasserin  |4 aut 
700 1 |a Georgakopoulos, Spiros V  |e verfasserin  |4 aut 
700 1 |a Karaminas, Antonis  |e verfasserin  |4 aut 
700 1 |a Tasoulis, Sotiris K  |e verfasserin  |4 aut 
700 1 |a Plagianakos, Vassilis P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 14 vom: 28., Seite 2980-3003  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:14  |g day:28  |g pages:2980-3003 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2315451  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 14  |b 28  |h 2980-3003