Anticipative Bayesian classification for data streams with verification latency

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 51(2024), 14 vom: 28., Seite 2812-2831
Auteur principal: Hofer, Vera (Auteur)
Autres auteurs: Krempl, Georg, Lang, Dominik
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Data streams concept drift label delay non-stationary environments temporal transfer learning verification latency
LEADER 01000caa a22002652c 4500
001 NLM379269384
003 DE-627
005 20250306194844.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2319222  |2 doi 
028 5 2 |a pubmed25n1263.xml 
035 |a (DE-627)NLM379269384 
035 |a (NLM)39440232 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hofer, Vera  |e verfasserin  |4 aut 
245 1 0 |a Anticipative Bayesian classification for data streams with verification latency 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Most of the existing adaptive classification algorithms in non-stationary data streams require recent labelled data for their updates. Such recent labels are often missing. For stream classification under verification latency only few approaches exist. Most of them assume clustered data or homogeneous drift in all features, which limits their applicability. We address this by proposing Anticipative Bayesian stream Classifier (ABClass), an approach that is capable of integrating and automatically selecting from different components. In its Bayesian classification framework, ABClass combines density estimation techniques, extended to extrapolate drift patterns over time, with unsupervised parameter tuning and unsupervised model selection. ABClass allows for multivariate density estimation and extrapolation techniques. In this work, we assume conditional independence between features given the class label for modelling feature-specific drift patterns. ABClass is generative and can also be used for explaining and visualising concept drift patterns. It is generic, making it easy to include further types of drift models, both for the class-conditional feature distribution and for the class prior distribution. The experimental evaluation on several real-world data streams shows its competitiveness compared to other state-of-the-art approaches. ABClass is in most cases ten- to hundred-times faster than its competitors, both for model fitting and for prediction 
650 4 |a Journal Article 
650 4 |a Data streams 
650 4 |a concept drift 
650 4 |a label delay 
650 4 |a non-stationary environments 
650 4 |a temporal transfer learning 
650 4 |a verification latency 
700 1 |a Krempl, Georg  |e verfasserin  |4 aut 
700 1 |a Lang, Dominik  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 14 vom: 28., Seite 2812-2831  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:51  |g year:2024  |g number:14  |g day:28  |g pages:2812-2831 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2319222  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 14  |b 28  |h 2812-2831