Sparse Coding Inspired LSTM and Self-Attention Integration for Medical Image Segmentation

Accurate and automatic segmentation of medical images plays an essential role in clinical diagnosis and analysis. It has been established that integrating contextual relationships substantially enhances the representational ability of neural networks. Conventionally, Long Short-Term Memory (LSTM) an...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 6098-6113
Auteur principal: Ji, Zexuan (Auteur)
Autres auteurs: Ye, Shunlong, Ma, Xiao
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM379240289
003 DE-627
005 20250306194435.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3482189  |2 doi 
028 5 2 |a pubmed25n1263.xml 
035 |a (DE-627)NLM379240289 
035 |a (NLM)39437296 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ji, Zexuan  |e verfasserin  |4 aut 
245 1 0 |a Sparse Coding Inspired LSTM and Self-Attention Integration for Medical Image Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2024 
500 |a Date Revised 28.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Accurate and automatic segmentation of medical images plays an essential role in clinical diagnosis and analysis. It has been established that integrating contextual relationships substantially enhances the representational ability of neural networks. Conventionally, Long Short-Term Memory (LSTM) and Self-Attention (SA) mechanisms have been recognized for their proficiency in capturing global dependencies within data. However, these mechanisms have typically been viewed as distinct modules without a direct linkage. This paper presents the integration of LSTM design with SA sparse coding as a key innovation. It uses linear combinations of LSTM states for SA's query, key, and value (QKV) matrices to leverage LSTM's capability for state compression and historical data retention. This approach aims to rectify the shortcomings of conventional sparse coding methods that overlook temporal information, thereby enhancing SA's ability to do sparse coding and capture global dependencies. Building upon this premise, we introduce two innovative modules that weave the SA matrix into the LSTM state design in distinct manners, enabling LSTM to more adeptly model global dependencies and meld seamlessly with SA without accruing extra computational demands. Both modules are separately embedded into the U-shaped convolutional neural network architecture for handling both 2D and 3D medical images. Experimental evaluations on downstream medical image segmentation tasks reveal that our proposed modules not only excel on four extensively utilized datasets across various baselines but also enhance prediction accuracy, even on baselines that have already incorporated contextual modules. Code is available at https://github.com/yeshunlong/SALSTM 
650 4 |a Journal Article 
700 1 |a Ye, Shunlong  |e verfasserin  |4 aut 
700 1 |a Ma, Xiao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 22., Seite 6098-6113  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:22  |g pages:6098-6113 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3482189  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 22  |h 6098-6113