EviPrompt : A Training-Free Evidential Prompt Generation Method for Adapting Segment Anything Model in Medical Images

Medical image segmentation is a critical task in clinical applications. Recently, the Segment Anything Model (SAM) has demonstrated potential for natural image segmentation. However, the requirement for expert labour to provide prompts, and the domain gap between natural and medical images pose sign...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 6204-6215
1. Verfasser: Xu, Yinsong (VerfasserIn)
Weitere Verfasser: Tang, Jiaqi, Men, Aidong, Chen, Qingchao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM379240246
003 DE-627
005 20241031233646.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3482175  |2 doi 
028 5 2 |a pubmed24n1585.xml 
035 |a (DE-627)NLM379240246 
035 |a (NLM)39437293 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yinsong  |e verfasserin  |4 aut 
245 1 0 |a EviPrompt  |b A Training-Free Evidential Prompt Generation Method for Adapting Segment Anything Model in Medical Images 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.10.2024 
500 |a Date Revised 31.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Medical image segmentation is a critical task in clinical applications. Recently, the Segment Anything Model (SAM) has demonstrated potential for natural image segmentation. However, the requirement for expert labour to provide prompts, and the domain gap between natural and medical images pose significant obstacles in adapting SAM to medical images. To overcome these challenges, this paper introduces a novel prompt generation method named EviPrompt. The proposed method requires only a single reference image-annotation pair, making it a training-free solution that significantly reduces the need for extensive labelling and computational resources. First, prompts are automatically generated based on the similarity between features of the reference and target images, and evidential learning is introduced to improve reliability. Then, to mitigate the impact of the domain gap, committee voting and inference-guided in-context learning are employed, generating prompts primarily based on human prior knowledge and reducing reliance on extracted semantic information. EviPrompt represents an efficient and robust approach to medical image segmentation. We evaluate it across a broad range of tasks and modalities, confirming its efficacy. The source code is available at https://github.com/SPIresearch/EviPrompt 
650 4 |a Journal Article 
700 1 |a Tang, Jiaqi  |e verfasserin  |4 aut 
700 1 |a Men, Aidong  |e verfasserin  |4 aut 
700 1 |a Chen, Qingchao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 22., Seite 6204-6215  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:22  |g pages:6204-6215 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3482175  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 22  |h 6204-6215