Intelligent Bionic Polarization Orientation Method Using Biological Neuron Model for Harsh Conditions

We developed an intelligent innovative orientation method to improve the accuracy of polarization compasses in harsh conditions: weak skylight polarization patterns resulting from unfavorable weather conditions (e.g., haze, sandstorms) or locally destroyed skylight polarization conditions caused by...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 21. Okt.
1. Verfasser: Shen, Chong (VerfasserIn)
Weitere Verfasser: Wu, Yicheng, Qian, Guanyu, Wu, Xindong, Cao, Huiliang, Wang, Chenguang, Tang, Jun, Liu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM379240033
003 DE-627
005 20241024002719.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3484183  |2 doi 
028 5 2 |a pubmed24n1578.xml 
035 |a (DE-627)NLM379240033 
035 |a (NLM)39437271 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Chong  |e verfasserin  |4 aut 
245 1 0 |a Intelligent Bionic Polarization Orientation Method Using Biological Neuron Model for Harsh Conditions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We developed an intelligent innovative orientation method to improve the accuracy of polarization compasses in harsh conditions: weak skylight polarization patterns resulting from unfavorable weather conditions (e.g., haze, sandstorms) or locally destroyed skylight polarization conditions caused by occlusions (e.g., buildings, trees). First, the skylight polarization status was determined with the degree of linear polarization threshold analysis method and a bionic polarization enhancement sensing model was constructed to simulate the enhanced perception mechanism identified in the Syrphidae visual neural pathway, highly efficient in dark or weakly illuminated environments. The bionic model successfully enhanced the information content extracted from weak polarization patterns. Second, polarization pixel interferences, caused by occlusions under locally destroyed skylight polarization conditions, were removed with a convolutional neural network for image segmentation and the sky area of interest was identified. Finally, the incomplete angle of polarization map derived after image segmentation was fitted using our optimized adaptive antisymmetric ring algorithm. On the basis of the strong angle-of-polarization antisymmetry along the solar meridian, information extracted from the sparse and irregular polarization pixels was analyzed to derive a high-accuracy polarization orientation solution. The whole method intelligently realizes pattern analysis and deep learning intelligent processing, efficiently rotates to manage polarization disorientation. The experimental results demonstrated the performance of the proposed method in compensating for reduced orientation accuracy under degraded polarization conditions, its robustness against perturbations, and its beneficial impact on the environmental adaptability of bionic polarization compasses 
650 4 |a Journal Article 
700 1 |a Wu, Yicheng  |e verfasserin  |4 aut 
700 1 |a Qian, Guanyu  |e verfasserin  |4 aut 
700 1 |a Wu, Xindong  |e verfasserin  |4 aut 
700 1 |a Cao, Huiliang  |e verfasserin  |4 aut 
700 1 |a Wang, Chenguang  |e verfasserin  |4 aut 
700 1 |a Tang, Jun  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 21. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:21  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3484183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 21  |c 10