Single-Nanometer Spinel with Precise Cation Distribution for Enhanced Oxygen Reduction

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 22. Okt., Seite e2413141
1. Verfasser: Shang, Long (VerfasserIn)
Weitere Verfasser: Ni, Youxuan, Wang, Yuankun, Yang, Wenxuan, Wang, Linyue, Li, Haixia, Zhang, Kai, Yan, Zhenhua, Chen, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article oxygen reduction reaction restricted aggregation growth single nanometer spinel oxides structure engineering
LEADER 01000caa a22002652 4500
001 NLM379229390
003 DE-627
005 20241024002608.0
007 cr uuu---uuuuu
008 241022s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202413141  |2 doi 
028 5 2 |a pubmed24n1578.xml 
035 |a (DE-627)NLM379229390 
035 |a (NLM)39436100 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shang, Long  |e verfasserin  |4 aut 
245 1 0 |a Single-Nanometer Spinel with Precise Cation Distribution for Enhanced Oxygen Reduction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Designing spinel nanocrystals (NCs) with tailored structural composition and cation distribution is crucial for superior catalytic performance but remarkably challenging due to their intricate nature. Here, an aggregation growth restricted hot-injection method is presented by meticulously investigating the fundamental nucleation and aggregation-driven growth kinetics governing spinel NC formation to address this challenge. Through controlled collision probability of nuclei during growth, this approach enables the synthesis of spinel NCs with unprecedented, single nanometer (1.2 nm). Single-nanometer CoMn2O4 spinel via this method exhibits a highly tailored structure with a maximized population of highly active octahedral Mn atoms, thereby optimizing oxygen intermediate adsorption during oxygen reduction reaction (ORR). Consequently, it exhibits a remarkable half-wave potential of 0.88 V in ORR and leads to a superior power density (170.9 mW cm-2) in zinc-air battery, outperforming commercial Pt/C and most reported spinel oxides, revealing a clear structure-property relationship. This structure design strategy is readily adaptable for the precise synthesis and engineering of various spinel structures, opening new avenues for developing advanced electrocatalysts and energy storage materials 
650 4 |a Journal Article 
650 4 |a oxygen reduction reaction 
650 4 |a restricted aggregation growth 
650 4 |a single nanometer 
650 4 |a spinel oxides 
650 4 |a structure engineering 
700 1 |a Ni, Youxuan  |e verfasserin  |4 aut 
700 1 |a Wang, Yuankun  |e verfasserin  |4 aut 
700 1 |a Yang, Wenxuan  |e verfasserin  |4 aut 
700 1 |a Wang, Linyue  |e verfasserin  |4 aut 
700 1 |a Li, Haixia  |e verfasserin  |4 aut 
700 1 |a Zhang, Kai  |e verfasserin  |4 aut 
700 1 |a Yan, Zhenhua  |e verfasserin  |4 aut 
700 1 |a Chen, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 22. Okt., Seite e2413141  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:22  |g month:10  |g pages:e2413141 
856 4 0 |u http://dx.doi.org/10.1002/adma.202413141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 22  |c 10  |h e2413141