Surface Epitaxial Growth of 2D/2D Bi2O2S/CdS Heterojunction Photoanodes and Their Photoelectrochemical Properties
Constructing high catalytic activity heterojunctions to compensate for the shortcomings of single catalysts has promoted the development of semiconductor catalysts in photoelectrochemical (PEC) water splitting. In this case, the 2D/2D Bi2O2S/CdS composite was successfully constructed by an in situ s...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 44 vom: 05. Nov., Seite 23491-23500 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Constructing high catalytic activity heterojunctions to compensate for the shortcomings of single catalysts has promoted the development of semiconductor catalysts in photoelectrochemical (PEC) water splitting. In this case, the 2D/2D Bi2O2S/CdS composite was successfully constructed by an in situ surface epitaxial growth method. At 1.23 V vs RHE, the catalytic activity of Bi2O2S/CdS with a 2D/2D heterojunction is the highest, and the current density of the Bi2O2S/CdS photoanode is 3.46 mA/cm2. Compared with the Bi2O2S photoanode (0.59 mA/cm2), the performance has been improved by 5.86 times. In electrochemical impedance spectroscopy testing, the arc radius of 2D/2D Bi2O2S/CdS is smaller than that of Bi2O2S, indicating faster charge-transfer kinetics. The data show that the 2D/2D heterojunction with surface-surface contact successfully enhances the catalytic activity of Bi2O2S, greatly elevating the efficiency of charge separation and migration. This study provides a method to enhance the PEC activity in type-I heterojunction photoelectrodes, promoting the application of Bi2O2S-based materials in photoelectrochemistry |
---|---|
Beschreibung: | Date Revised 05.11.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c03156 |