Surface Epitaxial Growth of 2D/2D Bi2O2S/CdS Heterojunction Photoanodes and Their Photoelectrochemical Properties

Constructing high catalytic activity heterojunctions to compensate for the shortcomings of single catalysts has promoted the development of semiconductor catalysts in photoelectrochemical (PEC) water splitting. In this case, the 2D/2D Bi2O2S/CdS composite was successfully constructed by an in situ s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 44 vom: 05. Nov., Seite 23491-23500
1. Verfasser: Wei, Xueling (VerfasserIn)
Weitere Verfasser: Ma, Zhen, Yang, Yuanhao, Li, Qiujie, Sun, Qian, Zhang, Dekai, Liu, Enzhou, Miao, Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Constructing high catalytic activity heterojunctions to compensate for the shortcomings of single catalysts has promoted the development of semiconductor catalysts in photoelectrochemical (PEC) water splitting. In this case, the 2D/2D Bi2O2S/CdS composite was successfully constructed by an in situ surface epitaxial growth method. At 1.23 V vs RHE, the catalytic activity of Bi2O2S/CdS with a 2D/2D heterojunction is the highest, and the current density of the Bi2O2S/CdS photoanode is 3.46 mA/cm2. Compared with the Bi2O2S photoanode (0.59 mA/cm2), the performance has been improved by 5.86 times. In electrochemical impedance spectroscopy testing, the arc radius of 2D/2D Bi2O2S/CdS is smaller than that of Bi2O2S, indicating faster charge-transfer kinetics. The data show that the 2D/2D heterojunction with surface-surface contact successfully enhances the catalytic activity of Bi2O2S, greatly elevating the efficiency of charge separation and migration. This study provides a method to enhance the PEC activity in type-I heterojunction photoelectrodes, promoting the application of Bi2O2S-based materials in photoelectrochemistry
Beschreibung:Date Revised 05.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c03156