Azatriangulene-Based Conductive C═C Linked Covalent Organic Frameworks with Near-Infrared Emission
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 50 vom: 15. Dez., Seite e2413629 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article covalent organic frameworks (COF) near‐infrared luminescence semiconducting COF trioxaazatriangulene |
Zusammenfassung: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Two near-infrared (NIR) emissive π-conjugated covalent organic frameworks (COFs) pTANG1 and pTANG2 are synthesized using Knoevenagel condensation of trioxaazatriangulenetricarbaldehyde (TATANG) with benzene- and biphenyldiacetonitriles, respectively. The morphology of the COFs is affected by the size of TATANG precursor crystals. Donor-acceptor interactions in these COFs result in small bandgaps (≈1.6 eV) and NIR emission (λmax = 789 nm for pTANG1). pTANG1 can absorb up to 9 molecules of water per unit cell, which is accompanied by a marked quenching of the NIR emission, suggesting applications as humidity sensors. p-Doping with magic blue significantly increases the electrical conductivities of the COFs by up to 8 orders of magnitude, with the room temperature conductivity of pTANG1 reaching 0.65 S cm-1, the highest among reported C═C linked COFs. 1H NMR relaxometry, temperature-dependent fluorescence spectroscopy, and DFT calculations reveal that the higher rigidity of the shorter phenylene linker is responsible for the more extended conjugation (red-shifted emission, higher electrical conductivity) of pTANG1 compared to pTANG2 |
---|---|
Beschreibung: | Date Revised 14.12.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202413629 |