Improving waste-incineration energy recovery efficiency using a reverse calculation algorithm to estimate waste composition and heating value
Copyright © 2024 Elsevier Ltd. All rights reserved.
Veröffentlicht in: | Waste management (New York, N.Y.). - 1999. - 190(2024) vom: 15. Nov., Seite 486-495 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Waste management (New York, N.Y.) |
Schlagworte: | Journal Article Energy recovery efficiency Heating value Incineration heat energy Waste composition Waste incinerator |
Zusammenfassung: | Copyright © 2024 Elsevier Ltd. All rights reserved. The heating value and composition of waste are crucial operational variables for understanding waste incinerators behavior and optimizing their operation. However, because the heating value and composition of waste are highly variable, their prediction in waste incineration plants is difficult. To overcome this issue, this study developed a novel method to derive heating value and composition waste via a reverse calculation algorithm using operating data and physics-based model. In addition, a process simulation model was developed to predict the performance of waste incinerator systems. We derived heating values and compositions of waste in the target incinerator using the supposed method and proposed an operating strategy to improve the energy recovery efficiency of the waste incinerator through the process simulation model. The energy recovery efficiency increased by approximately 10 % relative to that of the existing incinerator operation. The methodology developed in this study can be applied to various incinerator systems. Our study findings contribute to establishing an optimal operation of a waste incinerator by calculating the heating value and composition of waste |
---|---|
Beschreibung: | Date Completed 23.11.2024 Date Revised 23.11.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1879-2456 |
DOI: | 10.1016/j.wasman.2024.10.014 |