Transforming Image Super-Resolution : A ConvFormer-Based Efficient Approach

Recent progress in single-image super-resolution (SISR) has achieved remarkable performance, yet the computational costs of these methods remain a challenge for deployment on resource-constrained devices. In particular, transformer-based methods, which leverage self-attention mechanisms, have led to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 28., Seite 6071-6082
1. Verfasser: Wu, Gang (VerfasserIn)
Weitere Verfasser: Jiang, Junjun, Jiang, Junpeng, Liu, Xianming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM379099500
003 DE-627
005 20241028232326.0
007 cr uuu---uuuuu
008 241019s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3477350  |2 doi 
028 5 2 |a pubmed24n1583.xml 
035 |a (DE-627)NLM379099500 
035 |a (NLM)39423089 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Gang  |e verfasserin  |4 aut 
245 1 0 |a Transforming Image Super-Resolution  |b A ConvFormer-Based Efficient Approach 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent progress in single-image super-resolution (SISR) has achieved remarkable performance, yet the computational costs of these methods remain a challenge for deployment on resource-constrained devices. In particular, transformer-based methods, which leverage self-attention mechanisms, have led to significant breakthroughs but also introduce substantial computational costs. To tackle this issue, we introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR), offering an effective and efficient solution for lightweight image super-resolution. The proposed method inherits the advantages of both convolution-based and transformer-based approaches. Specifically, CFSR utilizes large kernel convolutions as a feature mixer to replace the self-attention module, efficiently modeling long-range dependencies and extensive receptive fields with minimal computational overhead. Furthermore, we propose an edge-preserving feed-forward network (EFN) designed to achieve local feature aggregation while effectively preserving high-frequency information. Extensive experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance compared to existing lightweight SR methods. When benchmarked against state-of-the-art methods such as ShuffleMixer, the proposed CFSR achieves a gain of 0.39 dB on the Urban100 dataset for the x2 super-resolution task while requiring 26% and 31% fewer parameters and FLOPs, respectively. The code and pre-trained models are available at https://github.com/Aitical/CFSR 
650 4 |a Journal Article 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Jiang, Junpeng  |e verfasserin  |4 aut 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 28., Seite 6071-6082  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:28  |g pages:6071-6082 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3477350  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 28  |h 6071-6082