TopicFM+ : Boosting Accuracy and Efficiency of Topic-Assisted Feature Matching

This study tackles image matching in difficult scenarios, such as scenes with significant variations or limited texture, with a strong emphasis on computational efficiency. Previous studies have attempted to address this challenge by encoding global scene contexts using Transformers. However, these...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 6016-6028
1. Verfasser: Giang, Khang Truong (VerfasserIn)
Weitere Verfasser: Song, Soohwan, Jo, Sungho
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM379050056
003 DE-627
005 20241025232502.0
007 cr uuu---uuuuu
008 241018s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3473301  |2 doi 
028 5 2 |a pubmed24n1580.xml 
035 |a (DE-627)NLM379050056 
035 |a (NLM)39418144 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Giang, Khang Truong  |e verfasserin  |4 aut 
245 1 0 |a TopicFM+  |b Boosting Accuracy and Efficiency of Topic-Assisted Feature Matching 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study tackles image matching in difficult scenarios, such as scenes with significant variations or limited texture, with a strong emphasis on computational efficiency. Previous studies have attempted to address this challenge by encoding global scene contexts using Transformers. However, these approaches have high computational costs and may not capture sufficient high-level contextual information, such as spatial structures or semantic shapes. To overcome these limitations, we propose a novel image-matching method that leverages a topic-modeling strategy to capture high-level contexts in images. Our method represents each image as a multinomial distribution over topics, where each topic represents semantic structures. By incorporating these topics, we can effectively capture comprehensive context information and obtain discriminative and high-quality features. Notably, our coarse-level matching network enhances efficiency by employing attention layers only to fixed-sized topics and small-sized features. Finally, we design a dynamic feature refinement network for precise results at a finer matching stage. Through extensive experiments, we have demonstrated the superiority of our method in challenging scenarios. Specifically, our method ranks in the top 9% in the Image Matching Challenge 2023 without using ensemble techniques. Additionally, we achieve an approximately 50% reduction in computational costs compared to other Transformer-based methods. Code is available at https://github.com/TruongKhang/TopicFM 
650 4 |a Journal Article 
700 1 |a Song, Soohwan  |e verfasserin  |4 aut 
700 1 |a Jo, Sungho  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 6016-6028  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:6016-6028 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3473301  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 6016-6028