Socio-hydrological modelling using participatory System Dynamics modelling for enhancing urban flood resilience through Blue-Green Infrastructure

Cities are complex systems characterised by interdependencies among infrastructural, economic, social, ecological, and human elements. Urban surface water flooding poses a significant challenge due to climate change, population growth, and ageing infrastructure, often resulting in substantial econom...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology. - 1998. - 636(2024) vom: 28. Juni, Seite 131248
1. Verfasser: Coletta, Virginia Rosa (VerfasserIn)
Weitere Verfasser: Pagano, Alessandro, Zimmermann, Nici, Davies, Michael, Butler, Adrian, Fratino, Umberto, Giordano, Raffaele, Pluchinotta, Irene
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of hydrology
Schlagworte:Journal Article Blue-Green Infrastructure Socio-hydrological modelling Stakeholder engagement Thamesmead Urban flood resilience
LEADER 01000caa a22002652 4500
001 NLM37903333X
003 DE-627
005 20241126232230.0
007 cr uuu---uuuuu
008 241017s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jhydrol.2024.131248  |2 doi 
028 5 2 |a pubmed24n1613.xml 
035 |a (DE-627)NLM37903333X 
035 |a (NLM)39416471 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Coletta, Virginia Rosa  |e verfasserin  |4 aut 
245 1 0 |a Socio-hydrological modelling using participatory System Dynamics modelling for enhancing urban flood resilience through Blue-Green Infrastructure 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.11.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cities are complex systems characterised by interdependencies among infrastructural, economic, social, ecological, and human elements. Urban surface water flooding poses a significant challenge due to climate change, population growth, and ageing infrastructure, often resulting in substantial economic losses and social disruption. Traditional hydrological modelling approaches for flood risk management, while providing invaluable support in the analysis of hydrological dynamics of floods, lack an understanding of the complex interplay between hydrological and non-hydrological (i.e., social, environmental, economic) aspects in an urban system, hindering effective flood risk management strategies. In this context, socio-hydrological modelling methods offer a complementary perspective to traditional hydrological models by integrating hydrological and social processes, thereby enhancing the understanding of the complex interactions driving flood resilience. The present work proposes a participatory socio-hydrological modelling approach based on System Dynamics (SD) to quantitatively analyse the interactions and feedback between flood risk and different aspects of the urban system. By combining scientific expertise with stakeholder knowledge, the modelling approach aims to provide decision-makers with a comprehensive understanding of flood dynamics and the effectiveness of resilience-building measures. Furthermore, the role of Blue-Green Infrastructure (BGI) in enhancing urban flood resilience, considering its interplay with grey infrastructure and interactions with various sub-systems, is explored. The results reveal i) the contribution of SD quantitative modelling in supporting the analysis of interactions between flood risk reduction measures and different sub-systems thus offering decision-makers actionable insights into the multifaceted nature of flood risk and resilience; ii) the added value provided by the combination of scientific and stakeholder knowledge in tailoring the model to the case study, quantifying socio-hydrological modelling dynamics limitedly explored in the scientific literature and supporting the selection of measures for increasing flood resilience; iii) the ability of BGI to provide not only hydrological benefits (mainly about the reduction of surface runoff) but also multiple social and environmental benefits (i.e., the co-benefits), especially when coupled with well-functioning grey infrastructure. Reference is made to one of the case studies of the CUSSH and CAMELLIA projects, namely Thamesmead (London, United Kingdom), a formerly inhospitable marshland currently undergoing a process of urban regeneration, with an increasing vulnerability to flooding 
650 4 |a Journal Article 
650 4 |a Blue-Green Infrastructure 
650 4 |a Socio-hydrological modelling 
650 4 |a Stakeholder engagement 
650 4 |a Thamesmead 
650 4 |a Urban flood resilience 
700 1 |a Pagano, Alessandro  |e verfasserin  |4 aut 
700 1 |a Zimmermann, Nici  |e verfasserin  |4 aut 
700 1 |a Davies, Michael  |e verfasserin  |4 aut 
700 1 |a Butler, Adrian  |e verfasserin  |4 aut 
700 1 |a Fratino, Umberto  |e verfasserin  |4 aut 
700 1 |a Giordano, Raffaele  |e verfasserin  |4 aut 
700 1 |a Pluchinotta, Irene  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of hydrology  |d 1998  |g 636(2024) vom: 28. Juni, Seite 131248  |w (DE-627)NLM098183508  |x 0022-1694  |7 nnns 
773 1 8 |g volume:636  |g year:2024  |g day:28  |g month:06  |g pages:131248 
856 4 0 |u http://dx.doi.org/10.1016/j.jhydrol.2024.131248  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 636  |j 2024  |b 28  |c 06  |h 131248