|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM378971891 |
003 |
DE-627 |
005 |
20241016233549.0 |
007 |
cr uuu---uuuuu |
008 |
241016s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202405186
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1569.xml
|
035 |
|
|
|a (DE-627)NLM378971891
|
035 |
|
|
|a (NLM)39410718
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Yang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Boosting Light-Matter Interactions in Plasmonic Nanogaps
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Plasmonic nanogaps in strongly coupled metal nanostructures can confine light to nanoscale regions, leading to huge electric field enhancement. This unique capability makes plasmonic nanogaps powerful platforms for boosting light-matter interactions, thereby enabling the rapid development of novel phenomena and applications. This review traces the progress of nanogap systems characterized by well-defined morphologies, controllable optical responses, and a focus on achieving extreme performance. The properties of plasmonic gap modes in far-field resonance and near-field enhancement are explored and a detailed comparative analysis of nanogap fabrication techniques down to sub-nanometer scales is provided, including bottom-up, top-down, and their combined approaches. Additionally, recent advancements and applications across various frontier research areas are highlighted, including surface-enhanced spectroscopy, plasmon-exciton strong coupling, nonlinear optics, optoelectronic devices, and other applications beyond photonics. Finally, the challenges and promising emerging directions in the field are discussed, such as light-driven atomic effects, molecular optomechanics, and alternative new materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a hotspots
|
650 |
|
4 |
|a hybridization theory
|
650 |
|
4 |
|a plasmonic nanogaps
|
650 |
|
4 |
|a strong coupling
|
650 |
|
4 |
|a surface‐enhanced spectroscopy
|
700 |
1 |
|
|a Chen, Wen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Xiaobo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Junjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cui, Ximin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Jiawei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Hongxing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 15. Okt., Seite e2405186
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:15
|g month:10
|g pages:e2405186
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202405186
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 15
|c 10
|h e2405186
|