VATr++ : Choose Your Words Wisely for Handwritten Text Generation

Styled Handwritten Text Generation (HTG) has received significant attention in recent years, propelled by the success of learning-based solutions employing GANs, Transformers, and, preliminarily, Diffusion Models. Despite this surge in interest, there remains a critical yet understudied aspect - the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 15. Okt.
1. Verfasser: Vanherle, Bram (VerfasserIn)
Weitere Verfasser: Pippi, Vittorio, Cascianelli, Silvia, Michiels, Nick, Van Reeth, Frank, Cucchiara, Rita
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378916386
003 DE-627
005 20241016232930.0
007 cr uuu---uuuuu
008 241016s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3481154  |2 doi 
028 5 2 |a pubmed24n1569.xml 
035 |a (DE-627)NLM378916386 
035 |a (NLM)39405139 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vanherle, Bram  |e verfasserin  |4 aut 
245 1 0 |a VATr++  |b Choose Your Words Wisely for Handwritten Text Generation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Styled Handwritten Text Generation (HTG) has received significant attention in recent years, propelled by the success of learning-based solutions employing GANs, Transformers, and, preliminarily, Diffusion Models. Despite this surge in interest, there remains a critical yet understudied aspect - the impact of the input, both visual and textual, on the HTG model training and its subsequent influence on performance. This work extends the VATr [1] Styled-HTG approach by addressing the pre-processing and training issues that it faces, which are common to many HTG models. In particular, we propose generally applicable strategies for input preparation and training regularization that allow the model to achieve better performance and generalization capabilities. Moreover, in this work, we go beyond performance optimization and address a significant hurdle in HTG research - the lack of a standardized evaluation protocol. In particular, we propose a standardization of the evaluation protocol for HTG and conduct a comprehensive benchmarking of existing approaches. By doing so, we aim to establish a foundation for fair and meaningful comparisons between HTG strategies, fostering progress in the field 
650 4 |a Journal Article 
700 1 |a Pippi, Vittorio  |e verfasserin  |4 aut 
700 1 |a Cascianelli, Silvia  |e verfasserin  |4 aut 
700 1 |a Michiels, Nick  |e verfasserin  |4 aut 
700 1 |a Van Reeth, Frank  |e verfasserin  |4 aut 
700 1 |a Cucchiara, Rita  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 15. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:15  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3481154  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 15  |c 10