PavSPLs are key regulators of growth, development, and stress response in sweet cherry
Copyright © 2024 Elsevier B.V. All rights reserved.
Veröffentlicht in: | Plant science : an international journal of experimental plant biology. - 1985. - 350(2024) vom: 02. Jan., Seite 112279 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2025
|
Zugriff auf das übergeordnete Werk: | Plant science : an international journal of experimental plant biology |
Schlagworte: | Journal Article Floral development Gibberellin Phytohormone SPLs Sweet cherry Plant Proteins Gibberellins Transcription Factors Plant Growth Regulators |
Zusammenfassung: | Copyright © 2024 Elsevier B.V. All rights reserved. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are plant-specific transcription factors essential for plant growth, development, and stress responses. Their roles in sweet cherry are not well understood. In this study, we identified and isolated 16 SPL genes from the sweet cherry genome, categorizing them into 5 subfamilies, with 12 PavSPLs predicted as miR156 targets. Promoter regions of PavSPLs contain cis-elements associated with light, stress, and phytohormone responses, indicating their role in biological processes and abiotic stress responses. Seasonal expression analysis showed that PavSPL regulates sweet cherry recovery after dormancy. Gibberellin (GA) treatment reduced PavSPL expression, indicating its role in GA-mediated processes. PavSPL14 overexpression in Arabidopsis thaliana resulted in earlier flowering and increased plant height and growth. Yeast two-hybrid assays showed an interaction between PavSPL14 and DELLA protein PavDWARF8, suggesting PavSPL14 and PavDWARF8 co-regulate growth and development. These findings lay the groundwork for further research on PavSPL function in sweet cherry |
---|---|
Beschreibung: | Date Completed 30.11.2024 Date Revised 30.11.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2259 |
DOI: | 10.1016/j.plantsci.2024.112279 |