ImFace++ : A Sophisticated Nonlinear 3D Morphable Face Model with Implicit Neural Representations

Accurate representations of 3D faces are of paramount importance in various computer vision and graphics applications. However, the challenges persist due to the limitations imposed by data discretization and model linearity, which hinder the precise capture of identity and expression clues in curre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 14. Okt.
1. Verfasser: Zheng, Mingwu (VerfasserIn)
Weitere Verfasser: Zhang, Haiyu, Yang, Hongyu, Chen, Liming, Huang, Di
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378876341
003 DE-627
005 20241015232757.0
007 cr uuu---uuuuu
008 241015s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3480151  |2 doi 
028 5 2 |a pubmed24n1568.xml 
035 |a (DE-627)NLM378876341 
035 |a (NLM)39401120 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Mingwu  |e verfasserin  |4 aut 
245 1 0 |a ImFace++  |b A Sophisticated Nonlinear 3D Morphable Face Model with Implicit Neural Representations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Accurate representations of 3D faces are of paramount importance in various computer vision and graphics applications. However, the challenges persist due to the limitations imposed by data discretization and model linearity, which hinder the precise capture of identity and expression clues in current studies. This paper presents a novel 3D morphable face model, named ImFace++, to learn a sophisticated and continuous space with implicit neural representations. ImFace++ first constructs two explicitly disentangled deformation fields to model complex shapes associated with identities and expressions, respectively, which simultaneously facilitate automatic learning of point-to-point correspondences across diverse facial shapes. To capture more sophisticated facial details, a refinement displacement field within the template space is further incorporated, enabling fine-grained learning of individual-specific facial details. Furthermore, a Neural Blend-Field is designed to reinforce the representation capabilities through adaptive blending of an array of local fields. In addition to ImFace++, we devise an improved learning strategy to extend expression embeddings, allowing for a broader range of expression variations. Comprehensive qualitative and quantitative evaluation demonstrates that ImFace++ significantly advances the state-of-the-art in terms of both face reconstruction fidelity and correspondence accuracy 
650 4 |a Journal Article 
700 1 |a Zhang, Haiyu  |e verfasserin  |4 aut 
700 1 |a Yang, Hongyu  |e verfasserin  |4 aut 
700 1 |a Chen, Liming  |e verfasserin  |4 aut 
700 1 |a Huang, Di  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 14. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:14  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3480151  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 14  |c 10