Polymer-Metal-Organic Frameworks (polyMOFs) Based on Tailor-Made Poly(alkenamer)s

© 2024 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 36(2024), 19 vom: 08. Okt., Seite 9696-9703
1. Verfasser: Mondal, Prantik (VerfasserIn)
Weitere Verfasser: Sensharma, Debobroto, Cohen, Seth M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2024 The Authors. Published by American Chemical Society.
Polymeric linkers used to construct porous, crystalline polymer-metal-organic frameworks (polyMOFs) are predominantly based on macromolecules with metal-coordinating ligand units (e.g., 1,4-benzenedicarboxylic acid, H2bdc) included in the primary polymer backbone. Polymers with ligand units as pendants or dangling side chain substituents have been far less explored for the synthesis of polyMOFs, despite the fact that such systems may have distinct properties and could take advantage of a variety of chain polymerization methods. Prevailing reports are based on nonliving polymerized linkers with H2bdc pendants that generated polyMOFs with key shortcomings in controlling the polymerization, tailoring polymeric linker composition and polyMOF properties, accessing porosity, etc. Herein, polymers containing H2bdc units as pendants were designed and synthesized via controlled olefin-metathesis polymerization. These poly(alkenamer)s were subsequently assembled into porous, crystalline networks with an isoreticular MOF (IRMOF) lattice topology. These polymer architectures and polymerization methodologies provide access to the formation of polyMOFs with tailored characteristics, including controlled composition, narrow dispersity, and side chain functionalization
Beschreibung:Date Revised 15.10.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.4c01794