Strong Magnetic Exchange Interactions and Delocalized Mn-O States Enable High-Voltage Capacity in the Na-Ion Cathode P2-Na0.67[Mg0.28Mn0.72]O2

© 2024 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 36(2024), 19 vom: 08. Okt., Seite 9493-9515
1. Verfasser: Bassey, Euan N (VerfasserIn)
Weitere Verfasser: Nguyen, Howie, Insinna, Teresa, Lee, Jeongjae, Barra, Anne-Laure, Cibin, Giannantonio, Bencok, Peter, Clément, Raphaële J, Grey, Clare P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378848909
003 DE-627
005 20241015232542.0
007 cr uuu---uuuuu
008 241014s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.4c01320  |2 doi 
028 5 2 |a pubmed24n1568.xml 
035 |a (DE-627)NLM378848909 
035 |a (NLM)39398379 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bassey, Euan N  |e verfasserin  |4 aut 
245 1 0 |a Strong Magnetic Exchange Interactions and Delocalized Mn-O States Enable High-Voltage Capacity in the Na-Ion Cathode P2-Na0.67[Mg0.28Mn0.72]O2 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Published by American Chemical Society. 
520 |a The increased capacity offered by oxygen-redox active cathode materials for rechargeable lithium- and sodium-ion batteries (LIBs and NIBs, respectively) offers a pathway to the next generation of high-gravimetric-capacity cathodes for use in devices, transportation and on the grid. Many of these materials, however, are plagued with voltage fade, voltage hysteresis and O2 loss, the origins of which can be traced back to changes in their electronic and chemical structures on cycling. Developing a detailed understanding of these changes is critical to mitigating these cathodes' poor performance. In this work, we present an analysis of the redox mechanism of P2-Na0.67[Mg0.28Mn0.72]O2, a layered NIB cathode whose high capacity has previously been attributed to trapped O2 molecules. We examine a variety of charge compensation scenarios, calculate their corresponding densities of states and spectroscopic properties, and systematically compare the results to experimental data: 25Mg and 17O nuclear magnetic resonance (NMR) spectroscopy, operando X-band and ex situ high-frequency electron paramagnetic resonance (EPR), ex situ magnetometry, and O and Mn K-edge X-ray Absorption Spectroscopy (XAS) and X-ray Absorption Near Edge Spectroscopy (XANES). Via a process of elimination, we suggest that the mechanism for O redox in this material is dominated by a process that involves the formation of strongly antiferromagnetic, delocalized Mn-O states which form after Mg2+ migration at high voltages. Our results primarily rely on noninvasive techniques that are vital to understanding the electronic structure of metastable cycled cathode samples 
650 4 |a Journal Article 
700 1 |a Nguyen, Howie  |e verfasserin  |4 aut 
700 1 |a Insinna, Teresa  |e verfasserin  |4 aut 
700 1 |a Lee, Jeongjae  |e verfasserin  |4 aut 
700 1 |a Barra, Anne-Laure  |e verfasserin  |4 aut 
700 1 |a Cibin, Giannantonio  |e verfasserin  |4 aut 
700 1 |a Bencok, Peter  |e verfasserin  |4 aut 
700 1 |a Clément, Raphaële J  |e verfasserin  |4 aut 
700 1 |a Grey, Clare P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 36(2024), 19 vom: 08. Okt., Seite 9493-9515  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:19  |g day:08  |g month:10  |g pages:9493-9515 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.4c01320  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 19  |b 08  |c 10  |h 9493-9515