Carbon Dots Infused 3D Printed Cephalopod Mimetic Bactericidal and Antioxidant Hydrogel for Uniaxial Mechano-Fluorescent Tactile Sensor
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 48 vom: 15. Nov., Seite e2409819 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 3D printing antioxidant bactericidal carbon dots fluorescent tactile sensor Hydrogels Carbon 7440-44-0 Anti-Bacterial Agents mehr... |
Zusammenfassung: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Cephalopods use stretchy skin and dynamic color-tuning organs for visual communication and camouflage. Inspired by these natural mechanisms, a fluorescent biomaterial for deformation-induced illumination and optical communication is proposed. This is the first report of 3D printed soft biomaterials infused with carbon dots hydrothermally derived from chitosan and benzalkonium chloride. These biomaterials exhibit a comprehensive array of properties, including significant uniaxial stretching, near-instantaneous response to tactile stimuli and pH, UV resistance, antibacterial, antioxidant, noncytotoxicity, and highlighting their potential as mechano-optical materials for biomedical applications. The hydrogel's durability is evaluated by cyclic stretching, folding, rolling, and twisting tests to ensure its integrity and good signal-to-noise ratio. The diffusion mechanism is determined by water imbibition kinetics, network parameters, and time-dependent breathing. Overcoming the common limitations of short lifespans and complex manufacturing processes in existing soft hybrids, this work demonstrates a straightforward method to produce durable, energy-independent, mechano-optical hydrogel. Combined with investigations, molecular dynamic modeling is used to understand the interactions of hydrogel components |
---|---|
Beschreibung: | Date Completed 28.11.2024 Date Revised 30.11.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202409819 |