Changen2 : Multi-Temporal Remote Sensing Generative Change Foundation Model

Our understanding of the temporal dynamics of the Earth's surface has been significantly advanced by deep vision models, which often require a massive amount of labeled multi-temporal images for training. However, collecting, preprocessing, and annotating multi-temporal remote sensing images at...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 10. Okt.
1. Verfasser: Zheng, Zhuo (VerfasserIn)
Weitere Verfasser: Ermon, Stefano, Kim, Dongjun, Zhang, Liangpei, Zhong, Yanfei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378739883
003 DE-627
005 20241014232253.0
007 cr uuu---uuuuu
008 241011s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3475824  |2 doi 
028 5 2 |a pubmed24n1567.xml 
035 |a (DE-627)NLM378739883 
035 |a (NLM)39388323 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Zhuo  |e verfasserin  |4 aut 
245 1 0 |a Changen2  |b Multi-Temporal Remote Sensing Generative Change Foundation Model 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Our understanding of the temporal dynamics of the Earth's surface has been significantly advanced by deep vision models, which often require a massive amount of labeled multi-temporal images for training. However, collecting, preprocessing, and annotating multi-temporal remote sensing images at scale is non-trivial since it is expensive and knowledge-intensive. In this paper, we present scalable multi-temporal change data generators based on generative models, which are cheap and automatic, alleviating these data problems. Our main idea is to simulate a stochastic change process over time. We describe the stochastic change process as a probabilistic graphical model, namely the generative probabilistic change model (GPCM), which factorizes the complex simulation problem into two more tractable sub-problems, i.e., condition-level change event simulation and image-level semantic change synthesis. To solve these two problems, we present Changen2, a GPCM implemented with a resolution-scalable diffusion transformer which can generate time series of remote sensing images and corresponding semantic and change labels from labeled and even unlabeled single-temporal images. Changen2 is a "generative change foundation model" that can be trained at scale via self-supervision, and is capable of producing change supervisory signals from unlabeled single-temporal images. Unlike existing "foundation models", our generative change foundation model synthesizes change data to train task-specific foundation models for change detection. The resulting model possesses inherent zero-shot change detection capabilities and excellent transferability. Comprehensive experiments suggest Changen2 has superior spatiotemporal scalability in data generation, e.g., Changen2 model trained on 256 2 pixel single-temporal images can yield time series of any length and resolutions of 1,024 2 pixels. Changen2 pre-trained models exhibit superior zero-shot performance (narrowing the performance gap to 3% on LEVIR-CD and approximately 10% on both S2Looking and SECOND, compared to fully supervised counterpart) and transferability across multiple types of change tasks, including ordinary and off-nadir building change, land-use/land-cover change, and disaster assessment. The model and datasets are available at https://github.com/Z-Zheng/pytorch-change-models 
650 4 |a Journal Article 
700 1 |a Ermon, Stefano  |e verfasserin  |4 aut 
700 1 |a Kim, Dongjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangpei  |e verfasserin  |4 aut 
700 1 |a Zhong, Yanfei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 10. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:10  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3475824  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 10  |c 10