Continuous-time Object Segmentation using High Temporal Resolution Event Camera

Event cameras are novel bio-inspired sensors, where individual pixels operate independently and asynchronously, generating intensity changes as events. Leveraging the microsecond resolution (no motion blur) and high dynamic range (compatible with extreme light conditions) of events, there is conside...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 10. Okt.
1. Verfasser: Zhu, Lin (VerfasserIn)
Weitere Verfasser: Chen, Xianzhang, Wang, Lizhi, Wang, Xiao, Tian, Yonghong, Huang, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378739832
003 DE-627
005 20241011232848.0
007 cr uuu---uuuuu
008 241011s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3477591  |2 doi 
028 5 2 |a pubmed24n1564.xml 
035 |a (DE-627)NLM378739832 
035 |a (NLM)39388324 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Lin  |e verfasserin  |4 aut 
245 1 0 |a Continuous-time Object Segmentation using High Temporal Resolution Event Camera 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Event cameras are novel bio-inspired sensors, where individual pixels operate independently and asynchronously, generating intensity changes as events. Leveraging the microsecond resolution (no motion blur) and high dynamic range (compatible with extreme light conditions) of events, there is considerable promise in directly segmenting objects from sparse and asynchronous event streams in various applications. However, different from the rich cues in video object segmentation, it is challenging to segment complete objects from the sparse event stream. In this paper, we present the first framework for continuous-time object segmentation from event stream. Given the object mask at the initial time, our task aims to segment the complete object at any subsequent time in event streams. Specifically, our framework consists of a Recurrent Temporal Embedding Extraction (RTEE) module based on a novel ResLSTM, a Cross-time Spatiotemporal Feature Modeling (CSFM) module which is a transformer architecture with long-term and short-term matching modules, and a segmentation head. The historical events and masks (reference sets) are recurrently fed into our framework along with current-time events. The temporal embedding is updated as new events are input, enabling our framework to continuously process the event stream. To train and test our model, we construct both real-world and simulated event-based object segmentation datasets, each comprising event streams, APS images, and object annotations. Extensive experiments on our datasets demonstrate the effectiveness of the proposed recurrent architecture. Our code and dataset are available at https://sites.google.com/view/ecos-net/ 
650 4 |a Journal Article 
700 1 |a Chen, Xianzhang  |e verfasserin  |4 aut 
700 1 |a Wang, Lizhi  |e verfasserin  |4 aut 
700 1 |a Wang, Xiao  |e verfasserin  |4 aut 
700 1 |a Tian, Yonghong  |e verfasserin  |4 aut 
700 1 |a Huang, Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 10. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:10  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3477591  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 10  |c 10