Stabilization and Surface Functionalization of Palladium Disulfide Nanoparticles with Acetylene Derivatives

Metal chalcogenide nanoparticles have been attracting extensive attention in diverse fields. Traditionally these nanoparticles are stabilized by organic ligands such as thiols and amines involving nonconjugated core-ligand interfacial interactions. In the present study, a facile wet-chemistry method...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - (2024) vom: 09. Okt.
1. Verfasser: Song, Xingjian (VerfasserIn)
Weitere Verfasser: Liu, Qiming, Yu, Bingzhe, Dubois, Davida, Chen, Shaowei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Metal chalcogenide nanoparticles have been attracting extensive attention in diverse fields. Traditionally these nanoparticles are stabilized by organic ligands such as thiols and amines involving nonconjugated core-ligand interfacial interactions. In the present study, a facile wet-chemistry method is described for the synthesis of palladium disulfide (PdS2) nanoparticles capped with acetylene derivatives. Spectroscopic and electrochemical measurements suggest that conjugated Pd-C≡ linkages are formed at the core-ligand interface and facilitate electronic coupling and hence manipulation of the nanoparticle optical and electronic properties. The unique interfacial linkages also allow further functionalization of the nanoparticles by metathesis reaction with olefin derivatives, as manifested in the reaction with vinylferrocene. This research opens new avenues for the structural engineering and functionalization of metal chalcogenide nanoparticles
Beschreibung:Date Revised 09.10.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c03199