MRI-Seed-Wizard : Combining Deep Learning Algorithms with Magnetic Resonance Imaging Enables Advanced Seed Phenotyping

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - (2024) vom: 09. Okt.
1. Verfasser: Plutenko, Iaroslav (VerfasserIn)
Weitere Verfasser: Radchuk, Volodymyr, Mayer, Simon, Keil, Peter, Ortleb, Stefan, Wagner, Steffen, Lehmann, Volker, Rolletschek, Hardy, Borisjuk, Ljudmilla
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378696599
003 DE-627
005 20241010232954.0
007 cr uuu---uuuuu
008 241010s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erae408  |2 doi 
028 5 2 |a pubmed24n1563.xml 
035 |a (DE-627)NLM378696599 
035 |a (NLM)39383098 
035 |a (PII)erae408 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Plutenko, Iaroslav  |e verfasserin  |4 aut 
245 1 0 |a MRI-Seed-Wizard  |b Combining Deep Learning Algorithms with Magnetic Resonance Imaging Enables Advanced Seed Phenotyping 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Evaluation of relevant seed traits is an essential part of most plant breeding and biotechnology programs. There is need for non-destructive, three-dimensional assessment of the morphometry, composition, and internal features of seeds. Here, we introduced a novel tool, MRI-Seed-Wizard, which integrates deep learning algorithms with non-invasive magnetic resonance imaging (MRI) for its use in the new domain - plant MRI. The tool enabled in vivo quantification of 23 grain traits, including volumetric parameters of inner seed structure. Several of these features cannot be assessed using conventional techniques, including X-ray computed tomography. MRI-Seed-Wizard was designed to automate the manual processes of identifying, labeling, and analyzing digital MRI data. We further provide advanced MRI protocols that allow the evaluation of multiple seeds simultaneously to increase throughput. The versatility of MRI-Seed-Wizard in seed phenotyping was demonstrated for wheat (Triticum aestivum) and barley (Hordeum vulgare) grains, and is applicable to a wide range of crop seeds. Thus, artificial intelligence, combined with the most versatile imaging modality - MRI, opens up new perspectives in seed phenotyping and crop improvement 
650 4 |a Journal Article 
700 1 |a Radchuk, Volodymyr  |e verfasserin  |4 aut 
700 1 |a Mayer, Simon  |e verfasserin  |4 aut 
700 1 |a Keil, Peter  |e verfasserin  |4 aut 
700 1 |a Ortleb, Stefan  |e verfasserin  |4 aut 
700 1 |a Wagner, Steffen  |e verfasserin  |4 aut 
700 1 |a Lehmann, Volker  |e verfasserin  |4 aut 
700 1 |a Rolletschek, Hardy  |e verfasserin  |4 aut 
700 1 |a Borisjuk, Ljudmilla  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g (2024) vom: 09. Okt.  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g year:2024  |g day:09  |g month:10 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erae408  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 09  |c 10