Latent Diffusion Enhanced Rectangle Transformer for Hyperspectral Image Restoration

The restoration of hyperspectral image (HSI) plays a pivotal role in subsequent hyperspectral image applications. Despite the remarkable capabilities of deep learning, current HSI restoration methods face challenges in effectively exploring the spatial non-local self-similarity and spectral low-rank...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 09. Okt.
1. Verfasser: Li, Miaoyu (VerfasserIn)
Weitere Verfasser: Fu, Ying, Zhang, Tao, Liu, Ji, Dou, Dejing, Yan, Chenggang, Zhang, Yulun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The restoration of hyperspectral image (HSI) plays a pivotal role in subsequent hyperspectral image applications. Despite the remarkable capabilities of deep learning, current HSI restoration methods face challenges in effectively exploring the spatial non-local self-similarity and spectral low-rank property inherently embedded with HSIs. This paper addresses these challenges by introducing a latent diffusion enhanced rectangle Transformer for HSI restoration, tackling the non-local spatial similarity and HSI-specific latent diffusion low-rank property. In order to effectively capture non-local spatial similarity, we propose the multi-shape spatial rectangle self-attention module in both horizontal and vertical directions, enabling the model to utilize informative spatial regions for HSI restoration. Meanwhile, we propose a spectral latent diffusion enhancement module that generates the image-specific latent dictionary based on the content of HSI for low-rank vector extraction and representation. This module utilizes a diffusion model to generatively obtain representations of global low-rank vectors, thereby aligning more closely with the desired HSI. A series of comprehensive experiments were carried out on four common hyperspectral image restoration tasks, including HSI denoising, HSI super-resolution, HSI reconstruction, and HSI inpainting. The results of these experiments highlight the effectiveness of our proposed method, as demonstrated by improvements in both objective metrics and subjective visual quality
Beschreibung:Date Revised 09.10.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1939-3539
DOI:10.1109/TPAMI.2024.3475249