Pixel is All You Need : Adversarial Spatio-Temporal Ensemble Active Learning for Salient Object Detection

Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 09. Okt.
1. Verfasser: Wu, Zhenyu (VerfasserIn)
Weitere Verfasser: Wang, Wei, Wang, Lin, Li, Yacong, Lv, Fengmao, Xia, Qing, Chen, Chenglizhao, Hao, Aimin, Li, Shuo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378696459
003 DE-627
005 20241010232953.0
007 cr uuu---uuuuu
008 241010s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3476683  |2 doi 
028 5 2 |a pubmed24n1563.xml 
035 |a (DE-627)NLM378696459 
035 |a (NLM)39383082 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a Pixel is All You Need  |b Adversarial Spatio-Temporal Ensemble Active Learning for Salient Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by proving a hypothesis: there is a point-labeled dataset where saliency models trained on it can achieve equivalent performance when trained on the densely annotated dataset. To prove this conjecture, we proposed a novel yet effective adversarial spatio-temporal ensemble active learning. Our contributions are four- fold: 1) Our proposed adversarial attack triggering uncertainty can conquer the overconfidence of existing active learning methods and accurately locate these uncertain pixels. 2) Our proposed spatio-temporal ensemble strategy not only achieves outstanding performance but significantly reduces the model's computational cost. 3) Our proposed relationship-aware diversity sampling can conquer oversampling while boosting model performance. 4) We provide theoretical proof for the existence of such a point-labeled dataset. Experimental results show that our approach can find such a point-labeled dataset, where a saliency model trained on it obtained 98%-99% performance of its fully-supervised version with only ten annotated points per image. The code is available at https://github.com/wuzhenyubuaa/ASTE-AL 
650 4 |a Journal Article 
700 1 |a Wang, Wei  |e verfasserin  |4 aut 
700 1 |a Wang, Lin  |e verfasserin  |4 aut 
700 1 |a Li, Yacong  |e verfasserin  |4 aut 
700 1 |a Lv, Fengmao  |e verfasserin  |4 aut 
700 1 |a Xia, Qing  |e verfasserin  |4 aut 
700 1 |a Chen, Chenglizhao  |e verfasserin  |4 aut 
700 1 |a Hao, Aimin  |e verfasserin  |4 aut 
700 1 |a Li, Shuo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 09. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:09  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3476683  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 09  |c 10