An Oriented Diffusion Strategy to Configure All-Region Ultrahigh-Density Metal Single Atoms for High-Capacity Sodium Storage

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 47 vom: 15. Nov., Seite e2412592
1. Verfasser: Ai, Lishen (VerfasserIn)
Weitere Verfasser: Zhao, Zongbin, Song, Xuedan, Tang, Yongchao, Li, Yong, Wang, Xuzhen, Bi, Honghui, Yuan, Yanbing, Qiu, Jieshan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon nanorings oriented diffusion single atoms sodium storage ultrahigh loading
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Single-atom metals (SAMs), despite being promising for high-utilization catalysis, biomedicine, and energy storage, usually suffer from limited catalytic performance caused by low metal loading. Herein, via an oriented diffusion strategy, all-region ultrahigh-loading (18.9 wt.%) Sn-SAMs over carbon nanorings matrix (Sn-SAMsCNR) are initially achieved based on the transformation of a g-C3N4@SnO2@polydopamine ring-like nested structure. The formation process of Sn-SAMs involves a critical conversion from oxygen-coordination (SnO2) to nitrogen-coordination (Sn-N4) and simultaneous anti-Osterwalder ripening promoted under spatial confinement. Notably, the g-C3N4-derived N-containing gaseous intermediates dynamically drive the oriented diffusion (inside-out diffusion) of Sn-SAMs across the carbon nanorings, realizing an all-region ultrahigh loading of SAMs throughout the carbon matrix. This strategy is also applied to other metal materials (Fe, Co, Ni, Cu, and Sb), and features excellent universality. When applied as the anode for sodium-ion batteries, experimental analyses and theoretical calculations demonstrate that high-loading Sn-N4 active sites significantly optimize electron density distribution and improve reaction kinetics. Consequently, Sn-SAMs@CNR exhibits outstanding durability of 364 mAh g-1   even after 5000 cycles with an impressively low (0.00068%) capacity decay per cycle. This work opens up a universally new avenue for all-region ultrahigh loading of SAMs to carbon matrix for high-performance energy storage
Beschreibung:Date Revised 25.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202412592