Scalable Layered Heterogeneous Hydrogel Fibers with Strain-Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 08. Okt., Seite e2409632
1. Verfasser: Cao, Pengle (VerfasserIn)
Weitere Verfasser: Wang, Yu, Yang, Jian, Niu, Shichao, Pan, Xinglong, Lu, Wanheng, Li, Luhong, Xu, Yiming, Cui, Jiabin, Ho, Ghim Wei, Wang, Xiao-Qiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conductive hydrogel fiber soft bioelectronics strain‐induced crystallization tough yet resilient
LEADER 01000naa a22002652 4500
001 NLM378639013
003 DE-627
005 20241008233032.0
007 cr uuu---uuuuu
008 241008s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202409632  |2 doi 
028 5 2 |a pubmed24n1561.xml 
035 |a (DE-627)NLM378639013 
035 |a (NLM)39377318 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Pengle  |e verfasserin  |4 aut 
245 1 0 |a Scalable Layered Heterogeneous Hydrogel Fibers with Strain-Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long-term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m-3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage-free toughening mechanism that involves dense long-chain entanglements and reversible strain-induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi-walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m-1) without compromising toughness and resilience. Furthermore, high-performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long-term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications 
650 4 |a Journal Article 
650 4 |a conductive 
650 4 |a hydrogel fiber 
650 4 |a soft bioelectronics 
650 4 |a strain‐induced crystallization 
650 4 |a tough yet resilient 
700 1 |a Wang, Yu  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Niu, Shichao  |e verfasserin  |4 aut 
700 1 |a Pan, Xinglong  |e verfasserin  |4 aut 
700 1 |a Lu, Wanheng  |e verfasserin  |4 aut 
700 1 |a Li, Luhong  |e verfasserin  |4 aut 
700 1 |a Xu, Yiming  |e verfasserin  |4 aut 
700 1 |a Cui, Jiabin  |e verfasserin  |4 aut 
700 1 |a Ho, Ghim Wei  |e verfasserin  |4 aut 
700 1 |a Wang, Xiao-Qiao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 08. Okt., Seite e2409632  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:08  |g month:10  |g pages:e2409632 
856 4 0 |u http://dx.doi.org/10.1002/adma.202409632  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 08  |c 10  |h e2409632