Learn2Talk : 3D Talking Face Learns from 2D Talking Face

The speech-driven facial animation technology is generally categorized into two main types: 3D and 2D talking face. Both of these have garnered considerable research attention in recent years. However, to our knowledge, the research into 3D talking face has not progressed as deeply as that of 2D tal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 07. Okt.
1. Verfasser: Zhuang, Yixiang (VerfasserIn)
Weitere Verfasser: Cheng, Baoping, Cheng, Yao, Jin, Yuntao, Liu, Renshuai, Li, Chengyang, Cheng, Xuan, Liao, Jing, Lin, Juncong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378608762
003 DE-627
005 20241009232414.0
007 cr uuu---uuuuu
008 241008s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3476275  |2 doi 
028 5 2 |a pubmed24n1562.xml 
035 |a (DE-627)NLM378608762 
035 |a (NLM)39374282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuang, Yixiang  |e verfasserin  |4 aut 
245 1 0 |a Learn2Talk  |b 3D Talking Face Learns from 2D Talking Face 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The speech-driven facial animation technology is generally categorized into two main types: 3D and 2D talking face. Both of these have garnered considerable research attention in recent years. However, to our knowledge, the research into 3D talking face has not progressed as deeply as that of 2D talking face, particularly in terms of lip-sync and perceptual mouth movements. The lip-sync necessitates an impeccable synchronization between mouth motion and speech audio. The speech perception derived from the perceptual mouth movements should resemble that of the driving audio. To mind the gap between the two sub-fields, we propose Learn2Talk, a learning framework that enhances 3D talking face network by integrating two key insights from the field of 2D talking face. Firstly, drawing inspiration from the audio-video sync network, we develop a 3D sync-lip expert model for the pursuit of lip-sync between audio and 3D facial motions. Secondly, we utilize a teacher model, carefully chosen from among 2D talking face methods, to guide the training of the audio-to-3D motions regression network, thereby increasing the accuracy of 3D vertex movements. Extensive experiments demonstrate the superiority of our proposed framework over state-of-the-art methods in terms of lip-sync, vertex accuracy and perceptual movements. Finally, we showcase two applications of our framework: audio-visual speech recognition and speech-driven 3D Gaussian Splatting-based avatar animation. The project page of this paper is: https://lkjkjoiuiu.github.io/Learn2Talk/ 
650 4 |a Journal Article 
700 1 |a Cheng, Baoping  |e verfasserin  |4 aut 
700 1 |a Cheng, Yao  |e verfasserin  |4 aut 
700 1 |a Jin, Yuntao  |e verfasserin  |4 aut 
700 1 |a Liu, Renshuai  |e verfasserin  |4 aut 
700 1 |a Li, Chengyang  |e verfasserin  |4 aut 
700 1 |a Cheng, Xuan  |e verfasserin  |4 aut 
700 1 |a Liao, Jing  |e verfasserin  |4 aut 
700 1 |a Lin, Juncong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 07. Okt.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:07  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3476275  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 07  |c 10