Multivariate Quality Control Chart for Autocorrelated Processes

Copyright Taylor & Francis.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 31(2004), 3 vom: 07., Seite 317-327
1. Verfasser: Kalgonda, A A (VerfasserIn)
Weitere Verfasser: Kulkarni, S R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Multivariate statistical process control autocorrelation
LEADER 01000caa a22002652c 4500
001 NLM378589156
003 DE-627
005 20250306181330.0
007 cr uuu---uuuuu
008 241007s2004 xx |||||o 00| ||eng c
024 7 |a 10.1080/0266476042000184000  |2 doi 
028 5 2 |a pubmed25n1261.xml 
035 |a (DE-627)NLM378589156 
035 |a (NLM)39372315 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kalgonda, A A  |e verfasserin  |4 aut 
245 1 0 |a Multivariate Quality Control Chart for Autocorrelated Processes 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright Taylor & Francis. 
520 |a Traditional multivariate statistical process control (SPC) techniques are based on the assumption that the successive observation vectors are independent. In recent years, due to automation of measurement and data collection systems, a process can be sampled at higher rates, which ultimately leads to autocorrelation. Consequently, when the autocorrelation is present in the data, it can have a serious impact on the performance of classical control charts. This paper considers the problem of monitoring the mean vector of a process in which observations can be modelled as a first-order vector autoregressive VAR (1) process. We propose a control chart called Z-chart which is based on the single step finite intersection test (Timm, 1996). An important feature of the proposed method is that it not only detects an out of control status but also helps in identifying variable(s) responsible for the out of control situation. The proposed method is illustrated with the help of suitable illustrations 
650 4 |a Journal Article 
650 4 |a Multivariate statistical process control 
650 4 |a autocorrelation 
700 1 |a Kulkarni, S R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 31(2004), 3 vom: 07., Seite 317-327  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:31  |g year:2004  |g number:3  |g day:07  |g pages:317-327 
856 4 0 |u http://dx.doi.org/10.1080/0266476042000184000  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2004  |e 3  |b 07  |h 317-327