Transcription factor NtMYB59 targets NtMYB12 to negatively regulate the biosynthesis of polyphenols in Nicotiana tabacum

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 216(2024) vom: 05. Nov., Seite 109181
1. Verfasser: Zhang, Chi (VerfasserIn)
Weitere Verfasser: Liu, Yongbin, Liu, Yali, Li, Hongguang, Chen, Yudong, Li, Bingyu, He, Shun, Chen, Qiansi, Yang, Jun, Gao, Qian, Wang, Zhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article NtMYB59 Phenylpropanoid compound Secondary metabolites Tobacco Polyphenols Transcription Factors Plant Proteins Anthocyanins
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
MYB12 is a key regulator that has been shown to promote the accumulation of various phenylpropanoid compounds in plants. However, the regulation of MYB12 gene is largely unknown. In this study, we found that overexpression of the NtMYB59 gene significantly inhibited the accumulation of chlorogenic acid (CGA), flavonols, and anthocyanins in tobacco, while knock-down and knock-out of NtMYB59 significantly increased the contents of these polyphenol compounds. Transcriptome analysis between WT and NtMYB59-OE plants revealed several differentially expressed genes (DEGs) encoding crucial enzymes in the phenylpropanoid pathway and the transcription factor NtMYB12. ChIP-seq assay further indicated that NtMYB12 might be a direct target of NtMYB59. Subsequent yeast one-hybrid, electrophoretic mobility shift assay, and Dual-Luciferase assays confirmed that NtMYB59 directly binds to the promoter of NtMYB12 to inhibit its expression. Moreover, loss-function of NtMYB59 significantly promoted the accumulation of flavonols and anthocyanins in ntmyb59, but their contents in ntmyb59/ntmyb12 double mutants were significantly lower than that of WT and ntmyb59 plants, indicating that the regulation of NtMYB59 on flavonoids biosynthesis depends on the activity of NtMYB12. Our study revealed that NtMYB59 regulates the expression of NtMYB12, and provided new potential strategies for modulating phenylpropanoids biosynthesis in tobacco
Beschreibung:Date Completed 07.11.2024
Date Revised 07.11.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.109181