Machine learning-enabled computer vision for plant phenotyping : a primer on AI/ML and a case study on stomatal patterning

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 21 vom: 15. Nov., Seite 6683-6703
1. Verfasser: Tan, Grace D (VerfasserIn)
Weitere Verfasser: Chaudhuri, Ushasi, Varela, Sebastian, Ahuja, Narendra, Leakey, Andrew D B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Review Artificial intelligence computer vision machine learning object detection plant biology plant phenotyping segmentation stomata stomatal density
LEADER 01000caa a22002652 4500
001 NLM378503812
003 DE-627
005 20241117232250.0
007 cr uuu---uuuuu
008 241004s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erae395  |2 doi 
028 5 2 |a pubmed24n1604.xml 
035 |a (DE-627)NLM378503812 
035 |a (NLM)39363775 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Grace D  |e verfasserin  |4 aut 
245 1 0 |a Machine learning-enabled computer vision for plant phenotyping  |b a primer on AI/ML and a case study on stomatal patterning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2024 
500 |a Date Revised 17.11.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Artificial intelligence and machine learning (AI/ML) can be used to automatically analyze large image datasets. One valuable application of this approach is estimation of plant trait data contained within images. Here we review 39 papers that describe the development and/or application of such models for estimation of stomatal traits from epidermal micrographs. In doing so, we hope to provide plant biologists with a foundational understanding of AI/ML and summarize the current capabilities and limitations of published tools. While most models show human-level performance for stomatal density (SD) quantification at superhuman speed, they are often likely to be limited in how broadly they can be applied across phenotypic diversity associated with genetic, environmental, or developmental variation. Other models can make predictions across greater phenotypic diversity and/or additional stomatal/epidermal traits, but require significantly greater time investment to generate ground-truth data. We discuss the challenges and opportunities presented by AI/ML-enabled computer vision analysis, and make recommendations for future work to advance accelerated stomatal phenotyping 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Artificial intelligence 
650 4 |a computer vision 
650 4 |a machine learning 
650 4 |a object detection 
650 4 |a plant biology 
650 4 |a plant phenotyping 
650 4 |a segmentation 
650 4 |a stomata 
650 4 |a stomatal density 
700 1 |a Chaudhuri, Ushasi  |e verfasserin  |4 aut 
700 1 |a Varela, Sebastian  |e verfasserin  |4 aut 
700 1 |a Ahuja, Narendra  |e verfasserin  |4 aut 
700 1 |a Leakey, Andrew D B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 75(2024), 21 vom: 15. Nov., Seite 6683-6703  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:75  |g year:2024  |g number:21  |g day:15  |g month:11  |g pages:6683-6703 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erae395  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 75  |j 2024  |e 21  |b 15  |c 11  |h 6683-6703